Mostrando entradas con la etiqueta Arabidopsis thaliana. Mostrar todas las entradas
Mostrando entradas con la etiqueta Arabidopsis thaliana. Mostrar todas las entradas

viernes, 27 de mayo de 2022

LAS INGENIERAS DEL MEDIOAMBIENTE Y SUS CAPACIDADES PARA ELIMINAR RESIDUOS

En el planeta existen más de 320.000 especies distintas de plantas. Su existencia en sí supone un reto a la creatividad, pero además son una herramienta que puede resultar muy útil para mantener el entorno libre de compuestos tóxicos, metales pesados o plaguicidas. En el Centro Nacional de Biotecnología (CNB-CSIC), el grupo de Antonio Leyva trata de sacar el máximo partido a la Lemna, una especie capaz de “atrapar” el arsénico. Para lograrlo necesitan comprender primero qué genes concretos están involucrados en ese proceso capaz de absorber, descomponer y eliminar aquello que se desee.
Las plantas llevan millones de años haciendo de lo asombroso algo cotidiano. Sin embargo, el concepto de la fitorremediación implica un conocimiento previo; se trata de aprovechar la capacidad que tienen las plantas para adaptarse a situaciones de estrés medioambiental y secuestrar productos tóxicos dentro de sus células.

Normalmente las plantas acumulan los productos tóxicos en la vacuola, pero conociendo estos mecanismos y sabiendo cómo y cuándo son eficientes podemos utilizar la fitorremediación para abordar un problema que causa estragos en la salud, la alimentación y el medioambiente. Este mecanismo de defensa que caracteriza a las plantas es una vía de doble sentido, según cuenta el investigador, ya que algunas tienen la capacidad de prevenir la entrada de compuestos tóxicos en su interior y expulsarlos en caso de que hayan conseguido dicha entrada. Para Leyva explorar esta posibilidad resulta también imprescindible ya que se asegura la calidad de las plantas que nos sirven de alimento, como por ejemplo el arroz. 
El cultivo del arroz se hace mediante prácticas de inundación que evitan el crecimiento de maleza que pueda atraer plagas. Por ello, el alimento queda muy expuesto al arsenito, una forma química del arsénico completamente tóxica (está presente de manera natural en los suelos, contaminando el agua subterránea que más tarde se utiliza para regar los cultivos o cocinar alimentos). Este está formado por un cancerígeno que entra con gran facilidad en los haces vasculares de las plantas llegando directamente al grano. 

El objetivo del grupo es determinar los genes que permiten a las plantas sobrevivir en suelos con gran presencia de arsénico. Una de las cuestiones que todavía queda pendiente es identificar cuál es el regulador que está coordinando toda la respuesta de la planta a este contaminante. Aunque se ha identificado alguna proteína que está involucrada en la acumulación de arsénico, todavía queda dar con la clave del experimento. Las razones por las que la investigación decidió centrarse en la Lemna son varias, tal como comenta el investigador: “Esta planta es especialmente útil para eliminar metales pesados como el arsénico, pero no solo eso. También puede ayudarnos a resolver un problema que tenemos en todo el mundo, que es la contaminación por exceso de nutrientes en las aguas”. El científico se refiere así al proceso conocido como eutrofización: los fertilizantes, básicamente nitratos y fosfatos, enriquecen el agua haciendo que aumente la cantidad de algas en la superficie. Estas impiden la actividad fotosintética del resto de las algas sumergidas y disminuyen la concentración de oxígeno en el agua. Este empobrecimiento afecta a la supervivencia de toda la flora y la fauna acuática, incluidos los peces, que acaban muriendo asfixiados.

Lemna alberga también una posibilidad poco explotada; puede utilizarse como fuente alternativa de proteínas, algo fundamental para la sustitución de la carne, ya que esta planta tiene un perfil de aminoácidos que compite perfectamente con la soja: la cantidad de biomasa que produce esta planta, junto a la facilidad de crecimiento, la sitúan como una candidata perfecta para ser una nueva fuente de alimento para humanos y otros animales.

Cristina Navarro (CNB-CSIC) siempre ha estado interesada en los problemas ambientales y de contaminación. En el laboratorio de Antonio Leyva se encarga de estudiar las bases genéticas que confieren a determinadas plantas esa capacidad de tolerar y almacenar los compuestos tóxicos. Para ello, Navarro se centra en la variabilidad natural de Arabidopsis, una especie presente en la Península Ibérica. Para comprobar qué variedades de esta especie tienen más capacidad para almacenar compuestos tóxicos como el arsénico, la investigadora realizó un plan. 

Primero la científica siembra sus semillas en una placa que contiene medio sintético sin arsénico. Las plantas se cultivarán dentro de una cámara y con unas condiciones controladas de temperatura y luz. Aquí, las distintas variedades se desarrollarán en cuestión de días.

Posteriormente el experimento pasa a la siguiente fase: las mismas plantas se traspasan a placas con arsénico y sin él, se observa su desarrollo midiendo la longitud de la raíz al cabo de varios días: el crecimiento de la raíz en presencia de arsénico no es para todas las plantas igual, ya que algunas variedades son más tolerantes que otras. Mediante análisis genéticos y moleculares se puede determinar cuál es la mutación responsable de las diferencias entre estas variedades según cuenta Navarro. Pero la capacidad de tolerar al arsénico no se debe a un solo gen, sino que depende de muchos factores. Con total seguridad, se cree que tanto en Arabidopsis como en Lemna, todos estos mecanismos están regulados por un pequeño número de genes, y ese es el principal objetivo de la investigación: encontrar alguno de estos reguladores.

Si esta investigadora consigue dar con alguno de los factores importantes que regulan esta acumulación del arsénico en Arabidopsis, el grupo de Leyva sabría hacia dónde apuntar en el caso de la Lemna.

Fuentes: CSIC, BioTech.

martes, 24 de mayo de 2022

ARABIDOPSIS THALIANA: LA PRIMERA PLANTA EN SUELO LUNAR

Los astronautas de la NASA se trajeron, entre rocas y arena (regolito), 382 kilogramos de Luna entre los años 1969 y 1972 durante las misiones Apolo. Este material ha sido estudiado y usado para cultivar en él esta planta, la Arabidopsis thaliana, originaria de África y Eurasia. Está relacionada con las hojas de mostaza y otras verduras crucíferas como el brócoli, la coliflor y las coles de Bruselas.

Cincuenta años después, tres de esas muestras se han utilizado para cultivar plantas con éxito. Por primera vez, los investigadores han hecho crecer esta planta resistente y bien estudiada en regolito lunar, pobre en nutrientes (con lo cual algo peor y con más dificultad).

Los científicos eligieron la Arabidopsis thaliana porque es a las plantas lo que las cobayas y ratones de laboratorio son entre los animales, aparte de que esta planta fue el primer vegetal del que se secuenció su genoma.

Entre unas 48 y 60 horas la mayoría de las plantas germinaron después de sembrar las semillas, emergiendo al poco unas pequeñas hojas de entre la tierra lunar. Es algo que no esperaban, reconocieron los científicos. Esto les sirvió para descubrir que los suelos lunares no interfieren en las hormonas y señales que intervienen en la germinación de las plantas.

Pero al sexto día se dieron cuenta de que algo no iba bien. Al podar las plantas para concentrar su estudio en un solo tallo, comprobaron que las podas tenían las raíces atrofiadas, más gordas, retorcidas y cortas que las plantas que habían plantado en tierras terrestres. Y eso pese a que las regaron con agua con los mismos nutrientes.
El desarrollo de la parte aérea de las plantas a partir del octavo día era más irregular y lento, con menos hojas y más pequeñas, y les salieron manchas rojizas. Todos estos síntomas indicaban que estaban sufriendo un estrés que no pasaron las muestras cultivadas en suelo terrestre.

Para determinar de dónde venía ese estrés, los investigadores estudiaron su transcriptona, las moléculas de ARN presentes en las células vegetales. La lectura del transcriptoma fue tan precisa que permitió diferenciar también entre las plantas cultivadas con suelo lunar, pero traído por las distintas misiones, la Apolo 11, la 12 y la 17. Las sembradas en suelo traído por la Apolo 17 presentaban un aspecto general mejor. Por dentro, a nivel genético, se confirmó la diferencia: había menor diferenciación del transcriptoma en las del Apolo 17 que, en las primeras, que se posaron en zonas más viejas o maduras expuestas al viento solar y la radiación cósmica, mientras que esta última trajo el material más protegido y menos maduro.

Fuentes: El País, Urbano Puebla

VIRUS DE LA GRIPE EN LA LECHE DE VACA PASTEURIZADA

Un equipo de científicos de la Universidad de Wisconsin-Madison ha descubierto por primera vez la presencia de virus de gripe aviar altament...