domingo, 30 de enero de 2022

IDENTIFICAN NUEVO BIOMARCADOR PARA EL DIÁGNOSTICO DE CÁNCER DE PÁNCREAS EN ESPAÑA

Una proteína presente en las células tumorales podría ser en uno de los primeros marcadores de cáncer de páncreas en estadios iniciales de la enfermedad. Actualmente, no existe ningún biomarcador para el diagnóstico precoz del cáncer de páncreas.

El estudio, que publica la revista eBioMedicine, lo han liderado investigadores del Instituto Hospital del Mar de Investigaciones Médicas y del IIBB-CSIC-IDIBAPS, y sus resultados apuntan a que este marcador puede suponer un paso importante en la detección y tratamiento precoz de este tipo de tumor, uno de los de peor pronóstico.

El estudio ha analizado la utilidad del receptor tirosina-quinasa AXL, una proteína presente en la superficie de las células, para detectar en los pacientes la presencia de cáncer de páncreas. Dicha proteína está habitualmente ausente en células normales, pero se ha demostrado que su presencia se incrementa de forma notable en determinados tipos de tumores, como los de páncreas, en los cuales está relacionada con la progresión de la enfermedad. Los investigadores intentaron demostrar si se podía detectar su presencia en sangre y si este hecho se podía utilizar para el diagnóstico precoz del cáncer de páncreas.

De hecho, el cáncer de páncreas y, en concreto, el adenocarcinoma ductal pancreático, es uno de los tumores de peor pronóstico. Es la tercera causa de muerte por cáncer en los países desarrollados, con casi 8.700 casos diagnosticados en España en 2021. La falta de marcadores diagnósticos es el principal problema en su abordaje, ya que solo el 20% de los pacientes se pueden operar a tiempo, facilitando así la metástasis y la resistencia al tratamiento en los tumores más avanzados.

Para demostrar la utilidad de este marcador, se recogieron y analizaron muestras de sangre de 59 pacientes del Hospital del Mar, y se validaron los resultados con un segundo grupo de 142 pacientes del Hospital Clínic de Barcelona. El estudio se complementa con una tercera cohorte de cáncer de páncreas familiar, diversos modelos animales en ratones, y análisis en células humanas tumorales in vitro para corroborarlos. «Se identificaron los niveles de la proteína AXL soluble en sangre, recogiendo el plasma
y analizando los niveles de este marcador en el grupo de control, en pacientes con pancreatitis crónica y en pacientes con tumores de páncreas. La colaboración de todos los pacientes y sus familias es clave para un estudio como este», explica Neus Martínez-Bosch, primera firmante del trabajo. «De esta manera, se demostró la presencia del marcador en sangre solo en los pacientes que ya habían desarrollado el tumor, sin estar presente en individuos sanos ni en los que sufrían pancreatitis crónica», comenta Helena Cristóbal, co-primera autora del estudio.

En la misma línea, Luis Barranco, del Hospital del Mar, puntualiza que «este hecho es muy importante ya que la pancreatitis es una patología que puede dificultar el diagnóstico en pacientes con cáncer de páncreas». «La proteína AXL es un marcador específico que nos indica que ya hay células malignas». Pilar Navarro, co-investigadora principal del estudio. Se trata de un descubrimiento importante, porque a veces algunos marcadores tumorales ya están presentes en las lesiones preneoplásicas, aunque no en todos los casos estas lesiones progresen. «El hecho que este marcador esté vinculado a la célula en estadio tumoral, le da una gran importancia por su especificidad para diagnosticar el cáncer de páncreas», añade. El siguiente paso de los investigadores es iniciar un estudio multicéntrico para poder analizar datos de un grupo importante de pacientes para validar su descubrimiento y llevarlo a la práctica clínica.

Actualmente, no existe ningún biomarcador para el diagnóstico precoz del cáncer de páncreas. Se utiliza la proteína CA19-9 solo para evaluar la respuesta al tratamiento en los pacientes que presentan elevación del CA19-9 en el debut de la enfermedad, pero no se puede usar en el diagnóstico a causa de su baja especificidad. Por este motivo, disponer de una nueva herramienta en el campo del diagnóstico es de especial relevancia. Sobre todo, teniendo en cuenta que el diagnóstico precoz es esencial para la cirugía del tumor, «la única opción de tratamiento curativo», destacan los investigadores.

Además, quieren determinar qué pacientes se pueden beneficiar de este nuevo marcador, ya que un pequeño número de tumores de páncreas no expresan la proteína AXL. A pesar de este hecho, si se combina el análisis con el otro marcador existente, CA19-9, su capacidad para determinar la presencia de células cancerosas se incrementa, llegando a una sensibilidad del 90%. «Estamos muy interesados en saber por qué algunos cánceres no expresan AXL, esto nos podría dar pistas para saber cómo funcionan los mecanismos tumorales que podríamos utilizar como dianas para tratamientos», asegura Pablo Garcia de Frutos, co-investigador principal del estudio y director del Departamento de Muerte y Proliferación Celular del IIBB-CSIC-IDIBAPS.

Fuente: ABC

sábado, 29 de enero de 2022

ENCUENTRAN EN MARTE MUESTRAS ASOCIADAS A PROCESOS BIOLÓGICOS

Científicos de la NASA anunciaron que muestras de rocas pulverizadas, recolectadas de la superficie de Marte por el "Rover Curiosity", son ricas en un tipo de carbono que en la Tierra se asocia a procesos biológicos.

Paul Mahaffy, principal investigador del laboratorio químico Sample Analysis at Mars (SAM), que se encuentra sobre Curiosity, calificó el descubrimiento como tentadoramente interesante. Sin embargo, aclaró que no necesariamente indica la existencia de vida antigua en el planeta rojo, ya que no han encontrado evidencia contundente que soporte dicha idea, como formaciones de roca sedimentaria producidas por una bacteria antigua o una diversidad de moléculas orgánicas complejas formadas por vida. El pasado 18 de enero, se publicó el reporte de estos descubrimientos en la revista científica Proceedings of the National Academy of Sciences, en donde los científicos ofrecen una explicación biológica inspirada en la Tierra. Sin embargo, advierten que ambos planetas son demasiado diferentes como para tener conclusiones basadas en ejemplos de nuestro planeta. La hipótesis involucra bacterias antiguas de la superficie que habrían producido una huella de carbono única conforme liberaban metano en la atmósfera, en donde la luz ultravioleta habría convertido el gas en moléculas más grandes y complejas. Estas habrían llovido en la superficie y se habrían preservado en las rocas.

Otras dos hipótesis ofrecen explicaciones no biológicas. Una sugiere que el carbono resultó de la interacción de luz ultravioleta con el gas de dióxido de carbono en la atmósfera marciana, produciendo nuevas moléculas con carbono que se asentaron en la superficie. La segunda especula que son restos de un evento raro hace cientos de millones de años, cuando el sistema solar pasaba por una nube gigante molecular, rica en el tipo de carbono detectado.

Christopher House, un científico de Curiosity, afirma que las tres explicaciones encajan con los datos, por lo que necesitan más información para descartar las incorrectas. El carbono es particularmente importante, ya que este elemento se encuentra en todas las formas de vida en la Tierra. Sin embargo, no todos los átomos de carbono indican vida: el átomo 12 de carbono es comúnmente asociado a las criaturas terrestres. Por lo que encontrar este átomo sugiere huellas de química relacionada con la vida. Al comparar la proporción de este tipo de isótopos de carbono, los científicos pueden determinar qué tipo de vida están observando y el ambiente en el que vivían.

Para analizar el carbono en la superficie marciana, el equipo de House utilizó la herramienta Tunable Laser Spectrometer (TLS) dentro del laboratorio SAM. Con ello midieron los isotopos, es decir, átomos de un elemento que tienen diferentes masas debido a la diferencia en el número de neutrones.
En Marte, encontraron que casi la mitad de las muestras tenían una cantidad sorprendentemente grande del átomo 12 de carbono, en comparación con lo que midieron en la atmósfera del planeta y en meteoritos.

“En la Tierra, los procesos que producen las muestras de carbono que estamos detectando en Marte son biológicos”, detalló House. “Tenemos que entender si la misma explicación funciona para Marte o si hay otras explicaciones, porque Marte es muy diferente”, concluyó.

miércoles, 26 de enero de 2022

POSIBLE VACUNA CONTRA EL CÁNCER DE PIEL

Una vacuna de ARNm puede ayudar a prevenir el cáncer de piel, según una investigación de la Facultad de Farmacia de la Universidad Estatal de Oregón (Estados Unidos). El estudio, dirigido por Arup Indra, apunta que un preparado, similar al del Covid-19, que estimule la producción de TR1, una proteína fundamental para la red antioxidante de la piel, podría proteger ante esta enfermedad.
 
"Una vacuna de ARNm, como las de Moderna y Pfizer para el Covid-19, que promoviera la producción de la proteína TR1 en las células de la piel, podría mitigar el riesgo de cánceres inducidos por los rayos UV y otros problemas cutáneos", afirma el director del estudio que recuerda que la radiación ultravioleta del sol provoca estrés oxidativo, aumentando el riesgo de cánceres de piel como el melanoma.

El cáncer de piel es el más frecuente en Estados Unidos, según los Centros de Control y Prevención de Enfermedades. El melanoma, el tipo más letal de cáncer de piel, es una forma en la que se desarrollan células malignas en las células de la piel conocidas como melanocitos. Los melanocitos producen el pigmento melanina, que determina el color de la piel. La mayoría de los casos de cáncer de piel están relacionados con la exposición a la radiación UV. Las personas se broncean por la exposición al sol o a las camas solares porque la producción de melanina es la forma que tiene el cuerpo de intentar proteger la piel de las quemaduras.

"A pesar de los esfuerzos por mejorar la concienciación pública sobre los signos de advertencia del melanoma y los peligros de la exposición excesiva a la radiación UV, la incidencia del melanoma sigue aumentando", afirma Indra. "Durante más de 40 años, los investigadores han considerado los antioxidantes de la dieta como una posible fuente de agentes baratos y de bajo riesgo para la prevención del cáncer, pero no siempre han dado buenos resultados en los ensayos clínicos y, en algunos casos, han sido realmente perjudiciales, de ahí la necesidad de intentar intervenir con nuevos agentes de quimioprevención, como una vacuna de ARNm", señala.

Las vacunas de ARNm actúan ordenando a las células que produzcan una proteína determinada. En el caso de las vacunas contra el coronavirus, se trata de un fragmento inofensivo de la proteína de la espiga del virus, que desencadena una respuesta inmunitaria; en el caso de la vacuna contra el melanoma propuesta, sería la TR1.

Los resultados de la investigación, en la que Indra y sus colaboradores utilizaron un modelo de ratón para investigar el papel de TR1 en la salud y la estabilidad de las células de la piel, se han publicado en el Journal of Investigative Dermatology.

domingo, 23 de enero de 2022

INTERSTICIO, EL NUEVO ÓRGANO

 La tecnología más avanzada ha permitido a los científicos ver un espacio intersticial no identificado, el cuál lo califican como ¨nuevo órgano¨.

Los científicos lo definen como una nueva expansión y especificación del concepto del intersticio humano, que es el espacio entre las células y los tejidos del organismo. Este nuevo órgano se puede llegar a convertir en uno de los órganos más grandes , junto a la piel.

Lo identificó un equipo de patólogos de la Escuela de Medicina de la Universidad NYU, en Estados Unidos. Estos expertos llegaron a la conclusión de que estas capas intersticiales están conectadas entre sí a través de compartimentos llenos de líquidos

Los investigadores creen que esta nueva estructura puede ser importante para explicar diversas cosas como es por ejemplo la metástasis del cáncer, la fibrosis...


Con los métodos que había antes no se pudo localizar este nuevo órgano pero gracias a los avances de la endomicroscopia en vivo, se pudo descubrir.

Lo descubrieron debido a que utilizaron una endomicroscopia de láser para examinar el conducto biliar de un paciente que tenía cáncer. Para estudiarlo, los científicos confirmaron la existencia de esas estructuras en otros 12 pacientes operados.

La identificación de este espacio intersticial tiene varias hipótesis.

Los científicos piensan que esta red, fuerte y elástica, puede llegar a actuar como un amortiguador para evitar que los tejidos que tenemos en el cuerpo los humanos se arañen con el funcionamiento diario, que hace que los músculos, órganos y vasos sanguíneos se contraigan y se expandan constantemente.

Además, también se piensa que esta red puede ser como una ¨autopista¨ para los fluidos que se encuentran en movimiento. Y eso puede justificar la idea de que cuando un cáncer llegue al espacio intersticial se puede expandir por el cuerpo muy rápido, que esto se conoce como metástasis.

Aparte, los científicos creen que las células que lo forman cambian con los años, y puede que contribuyan al arrugamiento de la piel y al endurecimiento de las extremidades, así como la progresión de enfermedades de distintos tipos.

Fuentes: bbc, juventud rebelde

cómo consiguen los cientificos crear un pegamento en medio acuoso tan potente?

Aunque en España el mejillón es visto como un manjar, y su comercialización en formato fresco o en lata es muy popular, la realidad es que sus características biológicas sorprenden mucho más allá de su consumo a nivel culinario.

Una de estas características que l
leva impresionando a los científicos desde hace años es la capacidad que tienen los mejillones para pegarse a las rocas y resistir cualquier azote de las olas. Pero ahora, tras más de una década de estudio, por fin se vislumbra luz al final del camino: ya se sabe cómo los mejillones azules o Mytilus edulis son capaces de aguantar pegados.

En el caso particular de los mencionados mejillones azules se sabe que son capaces de pasar días pegados a las rocas y resistir cualquier oleaje. Y se sabe que esto lo consiguen gracias a un pegamento submarino muy eficaz, producido por ellos mismos.

Tras una década de trabajo en el tema, un equipo internacional que incluye, entre otros, a Tobias Priemel y Matthew Harrington, ambos de la Universidad McGill en Canadá, ha conseguido descubrir los mecanismos celulares mediante los cuales los mejillones fabrican su adhesivo subacuático.

Al recopilar información a nivel subcelular, los investigadores descubrieron que en el interior del pie del mejillón hay canales de tamaño micrométrico que canalizan las sustancias que se unen para formar el pegamento. Las proteínas fluidas condensadas en diminutos sacos (vesículas) son secretadas en los canales, donde se mezclan con iones metálicos (hierro y vanadio, tomados del agua de mar). Los iones metálicos, que también se almacenan en pequeñas vesículas, se liberan en un proceso cuidadosamente programado, que acaba por curar (endurecer) el fluido proteico, solidificando el pegamento.

La acumulación y el uso biológicos del vanadio son fenómenos especialmente interesantes, ya que solo se sabe de unos pocos organismos que hiperacumulan vanadio. Los investigadores creen que el vanadio desempeña un papel importante en el endurecimiento del pegamento y siguen investigando esta cuestión.

El estudio se titula “Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels”.

fuentes El Español Amazing

viernes, 21 de enero de 2022

ABIERTO UN BANCO DE TEJIDOS Y CÉLULAS DE ANIMALES EN EL SUR DE EUROPA

Más de 30.000 especies animales se encuentran actualmente en peligro de extinción, según lo determina la Unión Internacional para la Conservación de la Naturaleza, una cifra que aumenta cada año.

En este contexto donde la biodiversidad está cada vez más amenazada y donde nos enfrentamos a una extinción masiva, la preservación de la materia animal para las generaciones futuras es una prioridad.

Ante esta situación, la Fundación Zoo impulsa y coordina el proyecto BioBanc para la conservación, un proyecto global destinado a preservar biomateriales y viables, y a facilitar el estudio de los animales de forma invasiva , dando prioridad a la investigación que a la conservación de la especie. ahora y en el futuro.

El BioBanc está organizado en torno a dos ramas: Banco de tejidos viables y gametos de la Universidad de Barcelona y un Banco de líneas celulares, denominado en el Instituto de Biología Evolutiva. Se trata de un proyecto enmarcado en el Nuevo Modelo Zoológico de Barcelona aprobado en 2019, con la educación y la conservación como ejes estratégicos.

Es así como dinamizamos el trabajo a favor de la preservación de la biodiversidad, en particular de las especies amenazadas, que la investigación ocupa un lugar prioritario en su actividad.

El proyecto BioBanc pretende homogeneizar de forma eficiente muestras de tejido y células de especies animales que hasta ahora han estado, no solo en el Zoo de Barcelona sino en otras procedencias.
Con todo ello, se quiere contribuir a la preservación de las especies a través de la gestión informada, tanto desde el punto de vista molecular, ecológico como poblacional.

A partir de 2018, la Fundación Zoo de Barcelona trabaja con el Instituto Evolutivo de Biología (IBE). El CryoZoo es parte del área de trabajo creativa en torno a las líneas celulares y nació con la intención de ser europeos equivalentes al zoológico congelado de San Diego, una organización pionera desde su creación en 1964 y fue reconocida en el mundo del mundo. Esta área, con una colección de 10,000 líneas celulares de más de 900 especies; El más grande del mundo.

¿POR QUÉ LOS ASTRONAUTAS SE QUEDAN SIN GLÓBULOS ROJOS?

 


Algunos expertos habían confirmado que la anemia era simplemente un fenómeno a corto plazo producido por los cambios de fluidos que se daban en nuestros cuerpos bajo la microgravedad. Incluso se ha llegado a calificar como un mito.
Sin embargo, un nuevo estudio apunta hacia un mecanismo más destructivo y de mayor duración.

Durante un vuelo de una misión espacial, los investigadores de este estudio descubrieron que el cuerpo humano destruye aproximadamente más de un 54% de glóbulos rojos de lo que lo haría en la Tierra. Estos datos provienen directamente de la sangre.

Las mediciones de la investigación se realizaron a través de análisis de sangre, análisis de hierro y también análisis de aliento de monóxido de carbono. Por cada vez que se exhalaba una molécula de monóxido de carbono, se destruía una molécula de pigmento de glóbulos rojos, lo que era equitativo a la posterior muerte del glóbulo.

También se hizo un estudio del número de muertes de glóbulos rojos que se producían cuando nos encontrábamos en la Tierra, el cuál era 2 millones de glóbulos rojos por segundo. Pero si hacíamos el mismo estudio en la órbita que se encontraba en el espacio el número de muertes de glóbulos rojos era de aproximadamente 3 millones de glóbulos rojos destruidos por segundo.

En condiciones de microgravedad, el cuerpo humano tiende a perder el 10% del líquido de los vasos sanguíneos, por lo que la sangre se acumula en la cabeza y el pecho. Este estudio fue durante años la explicación de la anemia espacial. Pero este estudio no estaba en lo cierto.

La pérdida de glóbulos rojos no compensa la composición de nuestra sangre, por lo que va más allá del viaje espacial.

Un estudio muestra que al espacio, se destruyen más glóbulos rojos y esta destrucción continúa durante todo el viaje espacial.

El estudio dejó de medir la producción de glóbulos rojos ya que ninguno de los astronautas de sus investigaciones sufrió anemia severa, por lo que se pensó que al estar en el espacio los cuerpos de los astronautas producían más glóbulos rojos que normalmente.

Estos hallazgos sugieren que la destrucción de glóbulos rojos, denominada hemólisis, es un efecto principal de la microgravedad en los vuelos espaciales y apoyan que la anemia asociada con los vuelos espaciales es una infección hemolítica que ha de tenerse en cuenta.



                                                                          FIN












PRIMER TRASPLANTE DE RIÑÓN DE CERDO A HUMANO

Jim Parsons, un norteamericano de 57 años que quedó en muerte cerebral tras un accidente de moto en septiembre, ha sido la primera persona en recibir con éxito dos riñones de cerdo modificados genéticamente en el abdomen después de que se le extirparan sus riñones originales. Esta no es la primera intervención exitosa de la operación, debido a que previamente ya se había realizado un primer trasplante a un humano de un corazón de cerdo genéticamente modificado.

Muchos de los intentos anteriores habían sido un fracaso debido a diferencias genéticas que provocaron el rechazo de los órganos. Los científicos han abordado ese problema editando genes potencialmente dañinos.

Estos órganos lograron filtrar sangre y producir orina tras aproximadamente 23 minutos. No hubo señales que apuntaran al rechazo del órgano por lo que al final lograron ser viables durante 77 horas, lo que hizo posible que el estudio finalizara de forma exitosa. La evaluación de este ha logrado aportar información importante sobre la posible seguridad y eficacia de los riñones en receptores de trasplantes humanos, incluso en ensayos clínicos. Estos resultados positivos que han sido obtenidos en esta operación indican que los xenotrasplantes pueden potencialmente solucionar los problemas de escasez de órganos, esto puede llegar a servir como ayuda a miles de personas. Además, el cerdo cuenta con una serie de características que facilitan el estudio: la vida natural de un cerdo es de 30 años, se crían con facilidad y pueden tener órganos de tamaño similar a los humanos.

Los investigadores destacan que esto no hubiera sido posible sin la participación de Jim Parsons y añaden que, debido a la generosidad del hombre, el modelo preclínico se denomine 'El modelo Parsons'.

Solo en Estados Unidos más de medio millón de personas sufren enfermedades avanzadas de riñón. La escasez de donantes de órganos limita la opción de un trasplante para muchas de las personas afectadas. Los tiempos de espera para recibir un órgano de un donante humano pueden alcanzar los cinco años, hasta diez en algunos estados, y cada año mueren casi 5.000 personas esperando un trasplante de riñón.

Jim Parsons ha supuesto un gran logro en la medicina, la generosidad de él y de su familia servirá para abrirnos nuevas puertas y conseguir avanzar cada vez más.

UN PÁNCREAS ARTIFICIAL

 


La diabetes indica que el nivel de glucosa, o azúcar, se encuentra muy elevado en la sangre (Hiperglucemia). El Páncreas es una glándula mixta que segrega hormonas, pero también enzimas digestivas, en el caso de la diabetes mellitus tipo I, este pierde la capacidad de fabricar la hormona insulina porque el sistema inmunitario ataca y destruye las células del páncreas encargadas de fabricar esta hormona. Nadie sabe exactamente por que ocurre, pero los científicos creen que su origen está relacionado con los Genes.

La insulina es una hormona que ayuda a que la glucosa penetre en las células para suministrarles energía, sin la insulina hay un exceso de glucosa que permanece en la sangre. Con el tiempo, los altos niveles de glucosa en la sangre pueden causar graves problemas de salud. La diabetes mellitus tipo I ocurre con mayor frecuencia en los niños y adultos jóvenes, pero puede aparecer en cualquier edad.

Seguir un plan de tratamiento permite que los niños se mantengan sanos, pero tratar la diabetes no es lo mismo que curarla. Las terapias actuales basadas en el suministro de insulina exógena (por inyecciones o bombas de insulina) no consiguen eliminar los episodios de hipoglucemia. Es precisamente la hipoglucemia el principal temor de los pacientes, debido a las consecuencias que una hipoglucemia severa puede tener, como por ejemplo el coma diabético. El control automático de la infusión de insulina (o páncreas artificial) se presenta como la solución tecnológica ideal para alcanzar los objetivos terapéuticos y minimizar el número de hipoglucemias, liberando así al paciente de la gran carga de autocontrol.

El equipo de Román Hovorka ha desarrollado una aplicación, CamAPS FX, que, combinada con un monitor de glucosa y una bomba de insulina actúa como un páncreas artificial, ajustando automáticamente la cantidad de insulina que administra, en función de los niveles de glucosa predichos o en tiempo real. 

Es un sistema híbrido de circuito cerrado, lo que significa que el cuidador del niño tendrá que administrar insulina a la hora de las comidas, pero el resto del tiempo el algoritmo funciona  por si solo, CamAPS FX hace predicciones sobre lo que cree que es probable que suceda a continuación en función de la experiencia pasada. Aprende cuanta insulina necesita el niño por día y cómo cambia esto en diferentes momentos del día. Luego usa esto para ajustar los niveles de insulina para ayudar a alcanzar los niveles ideales de azúcar en sangre. Aparte de las comidas está completamente automatizado, por lo que los padres no necesitan monitorizar continuamente los niveles de azúcar en la sangre de sus hijos.


La Aplicación redujo los niveles promedio de azúcar en la sangre, una medida de una molécula conocida como hemoglobina glicosilada o Hb Alc. La hemoglobina glicosilada se desarrolla cuando la hemoglobina, una proteína dentro de los glóbulos rojos que transporta oxígeno por todo el cuerpo, se une a la glucosa en la sangre y se vuelve glucosa.

Al medir la Hb Alc los médicos pueden obtener una imagen general de cuáles han sido los niveles  promedio de azúcar en la sangre de una persona durante un periodo de semanas o meses. Para las personas con diabetes cuanto mayor sea la Hb Alc mayor será el riesgo de desarrollar complicaciones relacionadas con la diabetes.

Los estudios iniciales han utilizado solo insulina, pero más recientemente se han probado sistemas bihormonales, con insulina y glucagón, bajo algoritmos de control y liberación de cada hormona por vías separadas. Actualmente, hay al menos 18 dispositivos en estudio, de primera, segunda y tercera generación, los cuales difieren en algunas características, como nivel de automatización, liberación hormonal y en los escenarios en que se ha estudiado.

Fuente(s): RIAI, ABC, SciELO

 


NUEVO BIOCHIP PARA EL DESARROLLO DE PIEL HUMANA IN VITRO

La simplificación del proceso de fabricación de piel in vitro y de otros tejidos complejos de múltiples capas se debe al diseño de un biochip que unos investigadores han elaborado. Se podría reducir el coste de ensayos preclínico al emplear la piel humana modelada con este dispositivo para poner a prueba medicamentos y cosméticos. Todo ello ha sido realizado por un equipo de la Universidad Politécnica de Madrid y de la Universidad Carlos III de Madrid, en España.

El biochip utilizado, ya se había empleado con éxito por investigadores de la UPM para albergar neuronas de invertebrados, demostrando su uso para acoger diferentes tipos de células y tejidos. El estudio fue publicado en la revista Biotechnology Journal. Gracias a investigadores de la UPM y de la UC3M se ha podido demostrar en modelos de piel tridimensional. 

En un principio, este chip se usó en vinilo biocompatible y micromecanizado. Los dispositivos microfluídicos se efectuaron mediante fotolitografía: una técnica compleja y de coste elevado. Por otra parte, la tecnología empleada por los investigadores de estas universidades es muy prometedora, barata, accesible y versátil, incluso modifica diseños a un coste cero.

Este dispositivo permite cultivar piel in vitro en su interior. Tiene dos canales divididos superpuestos separados por una membrana porosa. Por el canal inferior se simula el flujo sanguíneo y por el canal superior se genera la piel nutrida del medio de cultivo que fluye por el canal inferior mediante la membrana. Las bombas de jeringa de gran presión permiten controlar todos los fluidos. El procedimiento se realiza en una sala de cultivo celular y ambiente estéril. Los biochips se incuban en una atmósfera controlada de humedad, con el 5 por ciento de CO₂ y 37º de temperatura. Esto fue explicado por científicos del Departamento de Bioingeniería e Ingeniería Aeroespacial de la UC3M.


Las técnicas desarrolladas se han verificado en una prueba que ha consistido en la generación de una piel tridimensional con sus dos capas principales. La dermis se ha realizado a base de un hidrogel de fibrina proveniente de plasma humano, mientras que la epidermis se ha conseguido con una monocapa de queratinocitos que se siembran sobre el gel de fibrina. Un nuevo método creado ha permitido controlar la altura de la dermis basada en el flujo paralelo, una técnica que consiste en un proceso de deposición in situ de los compartimentos dérmico y epidérmico.

Se puede llevar a cabo este estudio sobre cualquier otro tipo de tejido que tenga la misma estructura que la piel. Además, existe la posibilidad de modelar en tejidos de una sola monocapa de células, como en los "órganos de un chip". Generar estas células resulta similar a funciones de órganos vivos a escala microscópica y con ello, podremos desarrollar nuevos fármacos y de menos coste.

El objetivo futuro es conseguir una piel madura: una epidermis diferenciada, con todas sus capas. Otro reto se basa en el estudio de la integración de biosensores que monitoricen en tiempo real el estado de la piel, pudiendo probar este modelo como método de testeo.

Fuentes: SINC, NCYT

FORMACIÓN DE LOS ESTIGMAS DE LAS FLORES

Un grupo de investigación del Instituto de Biología Molecular y Celular de Plantas (IBMCP), centro mixto del Consejo Superior de Investigaciones Científicas (CSIC), y la Universidad Politécnica de Valencia (UPV), ha realizado análisis genéticos y moleculares en el modelo vegetal Arabidopsis thaliana, para proponer un modelo que explique cómo varios genes interactúan cooperativamente para favorecer el desarrollo del estigma.

El estigma es un tejido especializado de las plantas angiospermas, que se sitúa en el extremo del pistilo, el órgano femenino de la flor. Es la puerta de entrada del polen, garantizando que solo las especies correctas entren en el pistilo para fertilizar los óvulos. Actúa atrapando el polen, donde germina, permitiendo la polinización y fertilización de las semillas y la reproducción. 

El desarrollo correcto del estigma es importante para el éxito reproductivo de las plantas con flores y la producción de frutos y semillas en las plantas de cultivo, por lo que es importante conocer la genética de este proceso.

Hasta ahora no se conocía el mecanismo por el que los genes implicados en la formación del estigma, que codifican factores de transcripción con funciones diversas en otros procesos, organizan la cadena de mando para formar específicamente el estigma y no otros tejidos, en el momento y dominio espacial correctos del desarrollo.

Según explica Cristina Ferrándiz Maestre, investigadora del IBMCP-CSIC-UPV, responsable del trabajo, han conseguido armar el puzzle de cómo interactúan entre sí los genes que se sabía que estaban implicados en la formación del estigma de la Arabidopsis thaliana.

Todos estos factores de transcripción forman un complejo cuando coinciden en un momento y dominio espacial determinado, que da instrucciones para formar el estigma. La investigadora confirma que se conocen algunos otros pocos ejemplos en plantas con flores en los que variaciones combinatorias en la composición de complejos transcriptores dan lugar al desarrollo de tejidos u órganos específicos.

El objetivo ahora es averiguar si complejos similares dirigen la formación del estigma en otras especies, y si esta novedad evolutiva podría estar relacionada con otros factores que consiguieron la capacidad de combinarse para producir este nuevo tejido, característico y específico de las plantas con flores. Además, quieren saber si diferentes combinaciones de estos y otros factores podrían dirigir la formación de otros tejidos del pistilo, como el estilo o el ovario.

Entender este mecanismo de formación del estigma permite comprender mejor el proceso de fertilización de las plantas con flores, pudiendo favorecerlo. De esta forma, se podría paliar la escasez de polinizadores naturales, como las abejas, con el desarrollo de estigmas más extensos o funcionales por más tiempo, que otorgan mayor capacidad para atrapar el polen.

Fuentes: CSIC, DICYT, 20 Minutos

EL SECRETO DE LA GRAN MENOPAUSIA VEGETAL

Investigadores del IBMCP han dado a conocer la descripción más precisa de los cambios que determinan el cese de la floración y la producción de frutos en plantas, con un solo evento reproductivo. 

Muchos cultivos económicamente importantes, como las legumbres y los cereales, son anuales, que florecen únicamente una vez y luego se secan y mueren. Los mecanismos que determinan su floración han sido bien estudiados, pero se sabe poco sobre el proceso por el cual se detiene la proliferación, la "menopausia" de las plantas. Ahora, en Current Biology, un equipo de investigadores del Instituto de Biología Molecular y Celular de Plantas (IBMCP), centro mixto de la Universidad Politécnica de Valencia (UPV) y el Consejo Superior de Investigaciones Científicas (CSIC), ha publicado el más completo análisis de dicho proceso. Este permitirá diseñar nuevos experimentos para controlar el período de floración e identificar otros factores involucrados en su control. 

En plantas con un único evento reproductivo, conocidas como monocárpicas, el inicio de la reproducción está marcado por la formación de la primera flor. Las señales que controlan el inicio de tal floración han sido ampliamente estudiadas (temperatura, edad de la planta, luz...). Sin embargo, existe otro momento muy importante para la germinación: su final. En muchas especies, la producción de flores cesa después de que se haya producido una cierta cantidad de frutos. Este cierre está marcado por el fin de la actividad de los meristemos, una reserva de células madre que sustenta el crecimiento y la producción de órganos vegetales.

“Este proceso se denomina parada proliferativa, y podemos llamarlo menopausia vegetal”, explica Cristina Ferrándiz Maestre, investigadora del IBMCP y una de las autoras del estudio. La parada de la proliferación constituye una enorme adaptación evolutiva, pues al no formarse nuevos órganos como flores y frutos, se asegura la redistribución de nutrientes para la producción de semillas y con ello conseguir un desarrollo óptimo, perpetuando así la especie. A pesar de su importancia ecológica y económica, se sabe relativamente poco sobre los factores que controlan dicha parada. 

En este trabajo, el grupo de investigación de Ferrándiz en el IBMCP utilizó técnicas de biología molecular y celular, genética y análisis de imágenes a la especie modelo Arabidopsis thaliana para definir, con alta resolución espacio-temporal, la secuencia de eventos moleculares y celulares que desencadenan el cese de la proliferación.

Por un lado, se realizó un estudio muy detallado de lo que ocurre en el meristemo antes del cese proliferativo: cómo y cuándo las células dejan de dividirse, cuándo empiezan a verse señales de vejez en el meristemo…  Por otro lado, se analizó una hormona vegetal importante para mantener la proliferación, la citoquinina. Usando etiquetas fluorescentes que permiten rastrear su actividad, se ha visto que tal actividad se bloquea por completo en el momento de la detención, por lo que las citoquininas puede ser el detonante de la detención. Además, se ha demostrado que, si se tratan los meristemos externamente con citoquininas, no dejan de producir células madre.

Este estudio es pionero porque, por primera vez, se han podido ver muy de cerca cómo se comportan los meristemos y los cambios que sufren y por ello, se ha convertido en un magnífico avance.

Fuente: National GeographicABCBioTech

EL ADN SE CONSERVA EN EL SUELO

Tradicionalmente, la tierra o la roca que rodea los hallazgos arqueológicos ha sido considerada un subproducto sin apenas importancia. Sin embargo, el suelo recoge mucha información de toda la vida que pasa por allí, de todos los seres que dejan su impronta (como heces o sangre) o se descomponen entre sus granos. En los últimos años, se han desarrollado diferentes técnicas para sacar toda esa información de los sedimentos, incluido el ADN, la huella genética que nos caracteriza a todos. Ahora, investigadores del Instituto Max Planck de Antropología Evolutiva de Leipzig junto con un equipo internacional de geoarqueólogos ha afinado un poco más el proceso, apuntando dónde hay que 'mirar' para encontrar la historia incrustada en el suelo, relacionando esta valiosa información con los tradicionales descubrimientos en huesos.

«La recuperación de ADN antiguo humano y de fauna de sedimentos ofrece nuevas y emocionantes oportunidades para investigar la distribución geográfica y temporal de humanos antiguos y otros organismos en sitios donde sus restos esqueléticos son raros o están ausentes», explica Matthias Meyer, autor principal del estudio y investigador del Max Planck. Su equipo utilizó técnicas geológicas para reconstruir la formación de sedimentos y yacimientos, con el objetivo de encontrar ADN a escala microscópica, para luego vincularlo a otros restos obtenidos de fósiles cercanos y poder trazar la historia de aquellos seres.

No es la primera vez que se consigue recuperar ADN del suelo. De hecho, en abril de este año, un equipo capitaneado también por el Max Planck y con colaboración española de Juan Luis Arsuaga, publicaba en Science que había sido capaz de encontrar por primera vez trazas de ADN nuclear en dos cuevas de los montes Altai en Siberia y más en la Galería de las Estatuas de la Cueva Mayor, en Atapuerca. Un «hito científico que no tiene precedentes», calificaba entonces Arsuaga.

En este caso, los investigadores de este recién estudio ahora publicado en en la revista "Proceedings of the National Academy of Sciences" (PNAS) utilizaron bloques de sedimentos intactos que habían almacenados y empapados en resina sintética similar a un plástico (poliéster) hace cuatro décadas provenientes de África, Asia, Europa y América del Norte. «El hecho de que estos bloques sean una excelente fuente de ADN antiguo, a pesar de que a menudo se han almacenado décadas en plástico, brinda acceso a un vasto depósito sin explotar de información genética -apunta Mike Morley de la Universidad de Flinders en Australia, quien dirigió algunos de los análisis geoarqueológicos-.

El estudio abre una nueva era de estudios de ADN antiguo que volverán a examinar las muestras almacenadas en los laboratorios, lo que permitirá el análisis de sitios que se han rellenado hace mucho tiempo, lo cual es especialmente importante dada la restricción de viajes y la inaccesibilidad del sitio en un mundo pandémico». Porque el suelo esconde muchos datos que pueden ser claves para reconstruir la vida que lo pisó hace miles de años.

Entre los bloques analizados, destacó precisamente la información rescatada de la cueva de Denísova, un lugar en las montañas de Altai, en la Siberia rusa. Allí habían sido previamente descubiertos diversos objetos y huesos con una antigüedad de hasta 48.000 años, incluida la falange de una niña que pertenecía a un grupo de humanos no identificados previamente, y bautizados como denisovanos. También se rescató otro fragmento de un hueso de una hembra bautuzada como "Denby", cuya madre era neandertal y su padre denisovano, siendo la primera homínida descendiente directa de dos especies. Esta gruta, de hecho, es el único lugar en el planeta en el que se sabe a ciencia cierta que fue ocupado por los dos grupos en varias ocasiones.



Por todos los descubrimientos realizados en la cueva, el sustrato parecía francamente prometedor. Y lo era: el grupo consiguió rescatar ADN antiguo de neandertales, denisovanos y humanos modernos a través de pequeñas partículas orgánicas incrustadas en el suelo. Concretamente, Diyendo Massilani, autor principal del estudio, pudo recuperar cantidades sustanciales de ADN neandertal de tan solo unos pocos miligramos de sedimento. Gracias a las muestras pudo identificar el sexo de los individuos que dejaron allí su ADN y relacionarlos con una población neandertal cuyo genoma fue reconstruido previamente a partir de un fragmento de hueso descubierto en la cueva.

«El ADN neandertal en estas pequeñas muestras estaba mucho más concentrado lo que normalmente lo encontramos en el material suelto», afirma Massilani. «Con este enfoque será posible en el futuro analizar el ADN de muchos individuos humanos antiguos diferentes a partir de un pequeño cubo de sedimento solidificado. Es divertido pensar que presumiblemente es así porque usaron la cueva como retrete hace decenas de miles de años».«Aquí se muestra claramente que la alta tasa de éxito de la recuperación de ADN de mamíferos antiguos de los sedimentos de la cueva de Denísova proviene de la abundancia de micro restos en la matriz del sedimento», dice por su parte Vera Aldeias, coautora del estudio e investigadora de la Universidad del Algarve en Portugal. «Este estudio es un gran paso para comprender con precisión dónde y bajo qué condiciones se conserva el ADN antiguo en los sedimentos», añade Morley.

El enfoque de este estudio permite un muestreo de sedimentos a microescala altamente localizado para el análisis de ADN y muestra que el ADN antiguo no se distribuye uniformemente en el sedimento. Es decir, que hay muchas probabilidades de encontrar nuevas piezas del puzle humano prehistórico si también se tiene en cuenta el suelo donde quedaron enterrados los restos, relacionando diferentes hallazgos, como huesos y ADN rescatado del sustrato, para escribir la historia más completa de aquellas poblaciones, dilucidando incluso sus pasos.

Fuente : ABC

CAMBIOS EN EL TEJIDO CARDÍACO DE LOS QUE HAN PADECIDO COVID-19

Un estudio ha detectado importantes cambios en el tejido del músculo cardíaco de las personas que murieron por la enfermedad.

Todavía se desconoce gran parte de las consecuencias de haber padecido la covid-19. Pero cada vez se van aportando más datos. Un equipo de investigación interdisciplinario de la Universidad de Göttingen y la Escuela de Medicina de Hannover ha detectado cambios significativos en el tejido del músculo cardíaco de las personas que murieron por la enfermedad. El daño al tejido pulmonar ha sido el foco de investigación en esta área durante algún tiempo y ahora se ha investigado totalmente a fondo.

El estudio actual apoya la participación del corazón en el desarrollo de la covid-19 a nivel microscópico por primera vez mediante la obtención de imágenes y el análisis del tejido afectado en las tres dimensiones. Los resultados se han publicado en la revista eLife

Los científicos tomaron imágenes del tejido a alta resolución mediante una radiación de rayos X particularmente brillante , y cómo anteriormente hemos dicho, la mostraron en tres dimensiones. Para hacer esto, se utilizó un microscopio de rayos X especial que la Universidad de Göttigen instaló y opera en el Sincrotrón de Electrones Alemán DESY en Hamburgo. Observaron cambios claros a nivel de los capilares (los pequeños vasos sanguíneos) en el tejido del músculo cardíaco cuando examinaron los efectos allí de la forma grave de la enfermedad covid-19.

En comparación con un corazón sano, las imágenes de rayos X de los tejidos afectados por una enfermedad grave desvelaron una red llena de divisiones, ramas y lazos que habían sido restaurados caóticamente por la formación y división de nuevos vasos. Estos cambios son la primera evidencia visual directa de uno de los principales impulsores del daño pulmonar en covid-19: un tipo especial de angiogenesis intussusception  en el tejido.

La calidad del tejido de los que habían padecido la covid era completamente diferente en comparación con el tejido sano, o incluso con enfermedades como la gripe grave o la miocarditis común, según las personas que lo han estudiado.

De momento son resultados preliminares y tienen que seguir investigando, porque las consecuencias de padecer la enfermedad y las razones por las que algunas personas enferman gravemente o presenta un Covid persistente que permanece a lo largo de los meses, sigue presentando varias incógnitas. Pero investigaciones como esta también apuntan la idea que se va consolidando en la comunidad científica, que la covid-19 va mucho más allá de una enfermedad que afecta principalmente al sistema respiratorio.

Fuentes: El Nacional.cat,iSanidad

SUPERVIVENCIA DE ALGUNOS PATÓGENOS

Se ha descubierto por qué algunas bacterias pueden sobrevivir a la terapia con antibióticos y provocan recaídas de las infecciones gracias a un grupo de investigación de la Universidad de Basilea, en Suiza.

Algunas infeccionen están causadas por bacterias y suelen poder tratarse bien con antibióticos, al menos mientras las bacterias no sean resistentes. Sin embargo, no siempre se puede lograr la erradicación total de las bacterias.

Investigadores emplearon la llamada tomografía de dos fotones en serie para demostrar que hay ciertas zonas en el tejido en las que la Salmonella causante de la fiebre tifoidea puede sobrevivir más o menos sin verse afectada por las defensas inmunitarias del organismo.

Se tomaron imágenes de bazos de ratones infectados donde la mayoría de las salmonelas viven en la llamada pulpa roja del bazo, la estación de reciclaje de los glóbulos rojos.

Descubrieron que los antibióticos necesitan la ayuda del sistema inmunitario para eliminar todas las bacterias. Los neutrófilos tienen que trabajar junto con el antibiótico durante varios días. Sin embargo, en la pulpa blanca hay pocos neutrófilos y su número se reduce durante el tratamiento. Al desaparecer el apoyo de los neutrófilos del huésped, el antibiótico por sí solo no puede erradicar la Salmonella local. 

El equipo de investigación, para superar este problema ha intentado reforzar las defensas del organismo con la ayuda de una terapia inmunológica aplicada simultáneamente. Bumann nos explica que "Este enfoque puede ayudar a estimular el sistema inmunitario y a mantener una alta densidad de neutrófilos durante más tiempo"

Fuente: Infosalus

¿EL CARBONO DE MARTE PROCEDE DE ORGANIMOS VIVIENTES?

Desde principios de agosto de 2012, el rover Curiosity no ha dejado de recorrer el cráter Gale en Marte, enviando continuamente datos y resultados a la Tierra para su análisis por parte de los científicos. Especialmente intrigante resulta el estudio de los isótopos de carbono tomados por el rover en media docena de lugares, incluido el borde de un peligroso acantilado. El carbono es uno de los más fiables indicadores de vida, pero también puede originarse de otras formas.

En concreto, y en un estudio recién aparecido en Proceedings of the National Academy of Sciences (PNAS), un equipo de investigadores de la NASA, el Instituto Carnegie para las Ciencias y las universidades de Michigan, Georgetown y Estatal de Pennsylvania propone tres posibles explicaciones para el origen del carbono marciano: polvo cósmico, degradación ultravioleta del dióxido de carbono o degradación ultravioleta del metano producido por organismos vivientes. "Cualquiera de estos tres escenarios son poco convencionales y se diferencian de los procesos que son comunes en la Tierra".

Los isótopos son átomos de un mismo elemento cuyos núcleos, sin embargo, no tienen el mismo número de neutrones. Y el carbono tiene dos isótopos estables. Al observar las proporciones de cada uno de ellos en una sustancia determinada, los científicos pueden averiguar detalles sobre cómo fue el ciclo del carbono que los produjo, incluso si éste sucedió muy atrás en el tiempo. "Las cantidades de carbono 12 y carbono 13 en nuestro sistema solar, explica Christopher H. House, son las mismas que existían en los tiempos de su formación. Ambos están presentes en todo, pero debido a que el carbono 12 reacciona más rápido que el carbono 13, observar las cantidades relativas de cada uno en las muestras puede resultar revelador".

Curiosity ha pasado los últimos nueve años explorando un área del cráter Gale en la que han quedado expuestas capas de roca muy antiguas. El rover perforó la superficie de esas capas y obtuvo muestras enterradas a varios cm bajo la superficie actual. Tras calentar esas muestras para separar sus componentes químicos y llevar después a cabo un análisis espectrográfico del carbono liberado, los resultados mostraron una amplia gama de cantidades de carbono 12 y 13, según dónde o cuándo se formó cada muestra. Parte del carbono resultó ser muy pobre en carbono 13, mientras que otra parte estaba muy enriquecida con este isótopo en concreto.

"Las muestras extremadamente empobrecidas en carbono 13 son un poco como las muestras de Australia tomadas de sedimentos de hace 2.700 millones de años explica House, que fueron causadas por la actividad biológica cuando el metano fue consumido por antiguas colonias microbianas. Pero no necesariamente sucedió lo mismo en Marte, porque es un planeta que puede haberse formado a partir de materiales y procesos diferentes a los de la Tierra".

Para explicar las muestras con tan poco carbono 13, los investigadores sugieren tres posibilidades: una nube de polvo cósmico, la radiación ultravioleta que descompone el dióxido de carbono o la degradación ultravioleta del metano creado biológicamente. Según explica House, cada doscientos millones de años el Sistema Solar atraviesa una nube molecular galáctica. "Pero no deposita mucho polvo. Es difícil ver cualquiera de estos eventos de deposición en el registro de la Tierra".

Para crear una capa de la que Curiosity pudiera tomar muestras, en efecto, la nube de polvo galáctico primero habría tenido que bajar la temperatura en un Marte que todavía contenía agua y crear glaciares. El polvo se habría depositado sobre el hielo y luego habría tenido que permanecer en su lugar una vez que el glaciar se derritiera, dejando una capa de suciedad que incluía el carbono.

Algo muy poco probable ya que, hasta el momento, hay muy poca evidencia de glaciares pasados en el cráter Gale de Marte. Según los investigadores, "esta explicación es plausible, pero requiere investigación adicional".

La segunda posible explicación para las cantidades más bajas de carbono 13 es la conversión ultravioleta de dióxido de carbono en compuestos orgánicos como el formaldehído. Según House, "hay estudios que predicen que la radiación ultravioleta podría causar este tipo de fraccionamiento. Sin embargo, necesitamos más resultados experimentales para que podamos confirmar o descartar esta explicación".

La tercera forma de producir muestras muy pobres en carbono 13 es, también, la más interesante: organismos vivientes. Aquí, en la Tierra, una firma muy pobre en carbono 13 obtenida en un terreno muy antiguo indicaría que los microbios del pasado consumieron metano producido por microbios. El antiguo Marte pudo tener grandes columnas de metano liberadas desde el subsuelo y consumidas después por microorganismos en la superficie. Sin embargo, según los investigadores, actualmente no hay evidencia sedimentaria de microbios superficiales en el paisaje pasado de Marte.

En palabras de House, "las tres posibilidades apuntan a un ciclo de carbono inusual que no se parece a nada al de la Tierra actual. Pero necesitamos más datos para averiguar cuál de estas es la explicación correcta. Sería bueno que el rover detectara una gran columna de metano y midiera los isótopos de carbono a partir de ella, pero si bien hay columnas de metano, la mayoría son pequeñas y ningún rover ha tomado muestras de una lo suficientemente grande como para medir los isótopos”.

Para el científico, encontrar los restos de esteras microbianas o evidencia de depósitos glaciales también podría aclarar un poco más las cosas: "Estamos siendo cautelosos con nuestra interpretación, que es el mejor camino cuando se estudia otro mundo”.Curiosity, además, aún sigue recolectando y analizando muestras y dentro de aproximadamente un mes regresará a uno de los lugares donde encontró algunas de las muestras usadas para este estudio. Comparar las tasas actuales de los isótopos de carbono con las obtenidas hace varios años podría aportar pistas importantes para la solución.

Fuente: ABC

BIOIMPRESIÓN DE CÉLULAS NEURONÁLES

La técnica recién desarrollada se llama Transferencia lateral inducia por láser y fue desarrollada en un artículo de investigación publicado recientemente en la revista Micromáquinas. Esto mejora las técnicas de bioimpresión actuales mediante el uso de bioenlaces de diferentes viscosidades, lo que permite una mejor impresión en 3D mientras se mantiene un alto nivel de viabilidad y función celular.

Harid Orimi, estudiante de doctorado y sus coautores son los líderes en este trabajo. Los investigadores demostraron que esta técnica podría utilizarse para imprimir con éxito las neuronas sensibles, un componente importante del sistema nervioso periférico. Permite el desarrollo a largo plazo de la capacidad de bioimpresión, incluido el modelado de enfermedades, las pruebas de fármacos y la fabricación de implantes.

Utilizaron neuronas del ganglio de la raíz dorsal (DRG) del sistema nervioso periférico de ratones para probar la tecnología. Después de varias pruebas para medir la capacidad de las celdas impresas, se encontró que el 86 % de las celdas aún estaban vivas dos días después de la impresión.
Los investigadores señalan que la disponibilidad mejora porque el láser utiliza menos energía. Es más probable que la generación de calor asociada con un mayor uso de energía láser dañe las células. 
De esta forma, el equipo espera obtener confirmación para seguir estudiando los trasplantes de células, un avance que podría ser de gran utilidad en el descubrimiento de fármacos, como los medicamentos para la recuperación de nervios. Según Orimi, otro beneficio asociado con el uso de la tecnología es reducir las pruebas con animales.

Fuentes: Con salud, Espanol news

¿CÓMO SON CAPACES DE COMER LAS BALLENAS SIN AHOGARSE?

Las ballenas tienen una curiosa forma de alimentarse, que es bien conocida. Para atrapar sus diminutas presas, llamadas krill, se lanzan a toda velocidad a través del agua con la boca bien abierta. En un solo trago gigante, ingieren un volumen de agua y krill que puede ser aún más grande que su propio cuerpo. Es una hazaña impresionante, especialmente si se tiene en cuenta el tamaño de una ballena jorobada o una azul, el animal más grande de la Tierra. Un grupo de investigadores ha descubierto una estructura en las ballenas rorcuales, que probablemente exista en todas las ballenas, similar a un 'tapón oral', un bulto carnoso que se mueve hacia atrás y bloquea el canal entre la boca y la faringe.
«Significa que cuando una ballena se lanza (a través del agua para comer), se protege la entrada a la faringe y, por lo tanto, a las vías respiratorias», señala la Universidad de Columbia Británica. El tapón evita que el agua entre en los pulmones del cetáceo mientras se alimenta. «Es como cuando la campanilla de un humano se mueve hacia atrás para bloquear nuestros conductos nasales y nuestra tráquea se cierra al tragar alimentos».

Resulta que los humanos tenemos un sistema similar para tragar alimentos sin que entre nada en los pulmones: la epiglotis y el paladar blanco. Los humanos probablemente también podrían comer bajo el agua, dice la investigadora, pero sería como nadar a gran velocidad hacia una hamburguesa y abrir la boca al acercarse; es difícil no inundar los pulmones.

Los investigadores analizaron el tejido de ballenas fallecidas en Islandia. Examinaron de cerca la anatomía de la ballena, tanto intacta como mediante una disección cuidadosa de la faringe. Manipularon las diversas estructuras para ver cómo se podían mover.
 Observaron la dirección de las fibras musculares para comprender cómo se moverían cuando los músculos se contraen y se acortan.
Los hallazgos también muestran que en los rorcuales la faringe solo puede ser utilizada por el tracto respiratorio o digestivo al mismo tiempo. Curiosamente, según los investigadores, no se ha informado de ninguna estructura como el tapón oral en ningún otro animal.

«Hay muy pocos animales con pulmones que se alimentan engullendo presas y agua, por lo que es probable que el tapón oral sea una estructura protectora específica de los rorcuales que es necesaria para permitir la alimentación a embestidas», dice la investigadora.

Los hallazgos, publicados en Current Biology, son un recordatorio de que todavía hay muchas incógnitas sobre las ballenas. Hay mucho más por descubrir, incluso si tosen, tienen hipo o eructan. «Las ballenas jorobadas expulsan burbujas por la boca, pero no estamos exactamente seguros de dónde proviene el aire; podría tener más sentido que las ballenas eructen por sus espiráculos».

Fuente: ABC

LA FECUNDACIÓN IN VITRO QUE PODRÍA SALVAR A LOS RINOCERONTES DE LA EXTINCIÓN

Después de la pérdida de Sudán, el último rinoceronte macho, el equipo de BioRescue, bajo el liderazgo del Instituto alemán de Leibniz para ...