viernes, 26 de noviembre de 2021

SÍNDROME DEL INTESTINO IRRITABLE

Los investigadores de la Universidad Católica de Lovaina (KU Leuven) han identificado el mecanismo biológico que explica por qué algunas personas experimentan dolor abdominal cuando comen ciertos alimentos. El hallazgo allana el camino para un tratamiento más eficaz del síndrome del intestino irritable y otras intolerancias alimentarias. El estudio, realizado en ratones y humanos, se publica en la revista Nature.

Hasta el 20% de la población mundial padece el síndrome del intestino irritable (SII), que causa dolor de estómago o malestar intenso después de comer. Esto afecta su calidad de vida. Las dietas sin gluten y otras dietas pueden proporcionar cierto alivio, pero el motivo por el que esto funciona es un misterio, ya que los pacientes no son alérgicos a los alimentos en cuestión ni padecen afecciones conocidas como la enfermedad celíaca.

Los estudios clínicos y de laboratorio revelan un mecanismo que conecta ciertos alimentos con la activación de las células que liberan histamina (llamadas mastocitos) y el dolor y la incomodidad posteriores. Un trabajo anterior del profesor Boeckxstaens y sus colegas mostró que el bloqueo de la histamina, un componente importante del sistema inmunológico, mejora la condición de las personas con SII.

En un intestino sano, el sistema inmunológico no reacciona a los alimentos, por lo que el primer paso fue averiguar qué podría causar la degradación de esta tolerancia. Dado que las personas con SII a menudo informan que sus síntomas comenzaron después de una infección gastrointestinal, como una intoxicación alimentaria, los investigadores comenzaron con la idea de que, una infección mientras un alimento en particular está presente en el intestino, podría sensibilizar al sistema inmunológico a ese alimento.

Infectaron ratones con un virus estomacal y, al mismo tiempo, los alimentaron con ovoalbúmina, una proteína que se encuentra en la clara de huevo y que se usa comúnmente en experimentos como un antígeno alimenticio modelo. Un antígeno es cualquier molécula que provoca una respuesta inmune.

Una vez que la infección desapareció, los ratones recibieron nuevamente ovoalbúmina para ver si su sistema inmunológico se había sensibilizado a ella. Los resultados fueron afirmativos: la ovoalbúmina por sí sola provocó la activación de los mastocitos, la liberación de histamina y la intolerancia digestiva con aumento del dolor abdominal. Este no fue el caso en ratones que no habían sido infectados con el insecto y recibieron ovoalbúmina.

Luego, los investigadores pudieron descifrar la serie de eventos en la respuesta inmune que conectaban la ingestión de ovoalbúmina con la activación de los mastocitos. Significativamente, esta respuesta inmune solo ocurrió en la parte del intestino infectada por la bacteria disruptiva. No produjo síntomas más generales de alergia alimentaria.

El profesor Boeckxstaens especula que esto apunta a un espectro de enfermedades inmunológicas relacionadas con los alimentos. "En un extremo del espectro, la respuesta inmune a un antígeno alimentario es muy local, como en el SII. En el otro extremo del espectro está la alergia alimentaria, que comprende una condición generalizada de activación severa de mastocitos, con un impacto en la respiración presión arterial, etc.", señala.

Luego, los investigadores continuaron para ver si las personas con SII reaccionaban de la misma manera. Cuando se inyectaron antígenos alimentarios asociados con el SII (gluten, trigo, soja y leche de vaca) en la pared intestinal de 12 pacientes se produjeron reacciones inmunes localizadas similares a las observadas en los ratones. No se observó reacción en voluntarios sanos.

El número relativamente pequeño de personas involucradas significa que este hallazgo necesita más confirmación, pero parece significativo cuando se considera junto con el ensayo clínico anterior que muestra una mejoría durante el tratamiento de pacientes con SII con antihistamínicos. "Esta es una prueba más de que el mecanismo que hemos descubierto tiene relevancia clínica", resalta el profesor Boeckxstaens.

Actualmente, se está llevando a cabo un ensayo clínico más amplio del tratamiento con antihistamínicos. "Pero conocer el mecanismo que conduce a la activación de los mastocitos es crucial y conducirá a nuevas terapias para estos pacientes --continúa--. Los mastocitos liberan muchos más compuestos y mediadores que solo histamina, por lo que, si puede bloquear la activación de estas células, creo que tendrá una terapia mucho más eficiente".

Fuente: Con Salud

CURAR DIABETES CON RATONES

Los investigadores han convertido las células madre humanas en células productoras de insulina y han demostrado en ratones que los niveles de azúcar en sangre se pueden controlar y la diabetes se puede curar funcionalmente durante nueve meses.

Los hallazgos, de investigadores de la Facultad de Medicina de la Universidad de Washington en St. Louis, se publicaron en la revista Nature Biotechnology.

Hace varios años, los mismos investigadores descubrieron cómo convertir células madre humanas en células beta pancreáticas que producen insulina. Cuando estas células se encuentran con el azúcar en sangre, secretan insulina. Aún así, el trabajo anterior ha tenido sus limitaciones y no ha controlado eficazmente la diabetes en ratones.

Ahora, los investigadores han demostrado que esta nueva técnica que desarrollaron puede convertir de manera más eficiente. Las células madre humanas, en células productoras de insulina que controlan de manera más efectiva el azúcar en la sangre.

"Cuantas más células fuera del objetivo obtenga, menos células terapéuticamente relevantes tendrá”, dijo.

“Se necesitan alrededor de mil millones de células beta para curar a una persona con diabetes. Pero sí una cuarta parte de las células que produce son en realidad células del hígado u otras células del páncreas. En lugar de necesitar mil millones de células, necesitará 1,25 mil millones de células. Hace que curar la enfermedad sea un 25% más difícil”.

La técnica se dirige al andamiaje interno de las células, llamado citoesqueleto. El citoesqueleto es lo que le da forma a una célula y permite que la célula interactúe con el entorno que la rodea, convirtiendo las señales físicas en señales bioquímicas.

“Es un enfoque completamente diferente, fundamentalmente diferente en la forma en que lo hacemos”, dijo. “Anteriormente, identificábamos varias proteínas y factores y los esparcíamos sobre las células para ver qué pasaba. Como hemos entendido mejor las señales, hemos podido hacer que ese proceso sea menos aleatorio”.

Entender ese proceso ha permitido al equipo de Millman producir más células beta. Es importante destacar que la nueva técnica funciona de manera eficiente en células madre de múltiples fuentes diferentes, ampliando en gran medida la capacidad de esta técnica en el estudio de enfermedades.

Explicó que aún queda mucho por hacer antes de que esta estrategia se pueda utilizar para tratar a las personas con diabetes. Tendrán que probar las células durante períodos de tiempo más largos en modelos animales más grandes.

Así como trabajar para automatizar el proceso para tener alguna esperanza de producir células beta que puedan ayudar a los millones de personas que actualmente requieren inyecciones de insulina para controlar su diabetes. Pero la investigación continúa.

Fuente: Saludiario

VIRUS ANTI-CÁNCER: EL PARVOVIRUS

Un estudio realizado por un grupo de científicos del Centro de Biología Molecular Severo Ochoa (CBMSO), centro mixto de la Universidad Autónoma de Madrid (UAM) y el Consejo Superior de Investigaciones Científicas (CSIC), ha demostrado el potencial terapéutico que tiene un parvovirus de ratón en la lucha contra el tumor cerebral más agresivo, prácticamente incurable por la medicina actual, el glioblastoma humano, u otros tipos de cáncer que tengan la señalización de p53 desregulada.

El parvovirus en un virus anticanceroso o virus oncolítico, que infecta selectivamente y destruye las células malignas. 

Las células cancerosas portan mutaciones y/o alteraciones en genes y proteínas que regulan la proliferación celular, entre otras funciones. Dichas alteraciones pueden haberse adquirido por herencia, o haber sido inducidas a lo largo de la vida por distintos agentes físico-químicos o biológicos. Muchas de estas alteraciones perturban las defensas innatas de las células contra los virus, o modifican genes que normalmente actúan suprimiendo tumores, como es el caso del regulador p53.

El glioblastoma es un cáncer altamente invasivo que se caracteriza por cambios en los vasos sanguíneos cerebrales, desactivando la función antitumoral que poseen estas células, llamadas pericitos, al alterar la autofagia mediada por chaperonas, y obligándolas a trabajar en la expansión del tumor.

Según palabras de los autores del estudio, cultivaron in vitro neuroesferas de células madre de glioblastoma, demostrando que el parvovirus MVM (Minute Virus of Mice), realiza una acción citotóxica exclusiva contra células que tienen alteradas las respuestas innatas y el regulador central p53 por mutación o fosforilación aberrante.

El trabajo se realizó con células madre obtenidas de pacientes de glioblastoma y se demostró en modelos de ratón a los que se les había implantado en el cerebro estas células madre de glioblastoma humano.

El reto principal en las terapias del cáncer es diseñar tratamientos que eliminen específicamente las células cancerosas que portan estas alteraciones, sin perjudicar a aquellas células que mantienen la fisiología normal.

Los resultados del estudio representan un importante avance en el desarrollo de nuevas terapias oncológicas, el empleo de los virus anti-cáncer o virus oncolíticos. 

José María Almendral, director del grupo y catedrático de la UAM, concluye diciendo que, una de las estrategias actuales más prometedoras en el desarrollo de nuevas terapias oncológicas es, precisamente, el empleo de los virus oncolíticos, que de manera natural o tras manipulación genética, son capaces de infectar y destruir preferentemente células de cáncer.

Fuentes: Noticias de la Ciencia, Universidad Autónoma de Madrid, Infosalus

TRASPLANTE DE CORAZÓN E HÍGADO

El Hospital Gregorio Marañón ha realizado, por primera vez en España, un trasplante simultáneo de corazón e hígado a un paciente con cardiopatía congénita, gracias a la coordinación de la Organización Nacional de Trasplantes (ONT).

Según ha detallado el Ejecutivo regional en un comunicado, su vida corría peligro, ya que presentaba una cirugía de Fontan fracasada, así como un fallo cardiaco y hepático terminal. La intervención se llevó a cabo con éxito y el paciente ya ha recibido el alta hospitalaria.

La operación duró más de 12 horas e involucró a 30 profesionales de todos los servicios que trabajan habitualmente en el programa de Cardiopatías Congénitas del Adulto, la Unidad de Trasplante Hepático, el Servicio de Cirugía General y en el Banco de Sangre, esencial en esta operación, que requirió muchos componentes sanguíneos.

Dada la magnitud del proceso, su planificación conllevó la elaboración consensuada de un protocolo multidisciplinar específico de actuación para abordar decisiones rápidas en todos los escenarios posibles en un trasplante tan complejo a nivel logístico, médico, quirúrgico, anestésico y de enfermería.

Este logro se ha conseguido gracias a dicha organización (ONT), que coordina específicamente este tipo de intervenciones, y al trabajo conjunto multidisciplinar que se desarrolla habitualmente en el Hospital Gregorio Marañón dentro de los programas consolidados de trasplante cardiaco y hepático.

"Se trata de un hito más en la exitosa historia del trasplante de órganos en España, así como un avance y esperanza para el tratamiento de adultos con cardiopatías congénitas terminales y fallos secundarios de múltiples órganos vitales, muchas veces huérfanos de terapias eficaces", ha destacado.

El paciente, que no pertenece a la Comunidad de Madrid, fue tratado en el Hospital Gregorio Marañón como Centro de Referencia Nacional (CSUR) en Cardiopatías Congénitas. Tras la larga intervención, en la que primero se realizó el trasplante de corazón y posteriormente el de hígado, fue trasladado a la Unidad de Cuidados Intensivos Postcirugía Cardiaca, de la que, en pocos días, pasó a la planta de hospitalización de Cardiología por su buena evolución, donde permaneció hasta su alta hospitalaria.

Todo ello no habría sido posible sin la colaboración y coordinación con el hospital donde se produjo la donación de órganos, otro centro de la Comunidad de Madrid, "además de la generosidad de la familia del donante”.

Fuente: Redacción Médica, El Periódico

FALLOS EN UN EXPERIMENTO CON NEUTRINOS.


Los neutrinos son las partículas elementales más abundantes del universo.Son escurridizas, difíciles de detectar, al carecer de carga eléctrica y tener una masa casi nula. La comunidad científica está construyendo máquinas de cientos de millones de euros, como el futuro detector japonés Hiper-Kamiokande, para intentar cazar neutrinos y medir con precisión sus propiedades. Los investigadores creen que estas partículas fantasmagóricas esconden algunos secretos sobre el universo. Un equipo internacional de investigadores revela el 24 de noviembre de 2021 que los simuladores utilizados hasta ahora están plagados de errores. Hay que afinarlos para entender por qué existimos. 

El universo comenzó con toda la materia y la energía concentradas en un punto más pequeño que el del final de esta frase. El problema de la teoría es que en el origen del universo se tendría que haber formado la misma cantidad de materia que de antimateria: partículas con la misma masa, pero con valores opuestos de carga eléctrica. Si fuera así, la materia y la antimateria se habrían aniquilado la una a la otra al entrar en contacto y no existiría el universo conocido ya que se contrarrestan la una a la otra. 

Muchos físicos creen que el neutrino tiene la respuesta. “Algo tuvo que romper ese ciclo. Hemos evolucionado a un universo en el que estamos rodeados de materia. En un bolígrafo o en una mesa no hay antimateria”, explica Megías, detalla que la clave puede estar en la oscilación de los neutrinos: estas partículas cambian su identidad a medida que se desplazan por el espacio, pudiendo adoptar tres tipos o sabores. Son camaleónicas, que tienen masa, al contrario de lo que se pensaba. El descubrimiento de este fenómeno mereció un Nobel de Física en 2015 para el japonés Takaaki Kajita y el canadiense Arthur McDonald.




NUEVAS FUERZAS MECÁNICAS DE LAS CÉLULAS

Según los investigadores Pere Roca-Cusachs e Isaac Almendros, conocer con detalle el modo en el cual trabajan las fuerzas en diversos procesos va a servir para ayudarnos a comprender mejor cómo se propaga un tumor canceroso y diseñar superiores tratamientos para dichas enfermedades.

Nos ayudarán a comprender cómo responde el corazón, las cuerdas vocales o el sistema respiratorio a la constante variación de fuerzas a la que se exponen continuamente. 

Explicaron que desde las cuerdas vocales hasta los latidos del corazón, las células humanas se ven constantemente afectadas por fuerzas mecánicas que cambian constantemente su respuesta a estos estímulos y regulan procesos esenciales, independientemente de si es en personas sanas o no.   Sin embargo, hasta ahora, se desconocía en gran medida cómo las células perciben estas fuerzas y responden a ellas. 

Ahora, este estudio muestra que es la velocidad a la que se aplica la fuerza lo que determina la sensibilidad mecánica de la celda. Los investigadores señalan que hay dos respuestas a la fuerza aplicada a la célula.

Las células pueden sentir y responder a la fuerza mecánica, y el endurecimiento del citoesqueleto causa rigidez celular y la ubicación de la proteína YAP en el núcleo.

Si la tasa de aplicación de la fuerza sigue aumentando por encima de cierto valor, se producirá el efecto contrario y la célula dejará de percibir fuerzas mecánicas, es decir, en lugar de que el citoesqueleto y la célula siguan aumentando su rigidez, se producirá una ruptura parcial del citoesqueleto provocando que se ablande la célula.

Los científicos además hicieron experimentos con ratas de laboratorio para verificar que los resultados observados en células individuales ocurren asimismo en órganos completos in vivo. 

Para eso, los estudiosos se fijaron en los pulmones, que de manera natural experimentan estiramientos mecánicos cíclicos a lo largo de la respiración, y ventilaron a diferente ritmo cada pulmón, de manera que un pulmón se llenaba y vaciaba a más velocidad (hiperventilación) y el otro más despacio, aunque manteniendo una tasa total de ventilación común. Tras equiparar las células de los dos pulmones, observaron que la proteína YAP incrementaba su ubicación nuclear únicamente en las células del pulmón sometido a hiperventilación. 

Según los estudiosos, este crecimiento de YAP en muestras vivas, provocado por el "tira y afloja celular", era afín al que está en tumores cancerígenos en proliferación.   

Según el biólogo del desarrollo Thomas Lecuit, del Instituto de Biología del Desarrollo de Marsella, "las fuerzas operan cada vez que hay que tallar una forma".

Fuentes: La Vanguardia, Investigación y Ciencia

NUEVO AGENTE ACTIVO CONTRA PARÁSITOS UNICELULARES


Un grupo de investigadores del Paul Scherrer PSI Institute publicaron en la revista EMBO Molecular Medicine que habían identificado un compuesto químico que podría ser adecuado como agente activo contra diferentes tipos de parásitos unicelulares. Entre ellos se encuentran los patógenos que causan las enfermedades de la malaria y la toxoplasmosis. El objetivo de esta sustancia o agente activo es la proteína tubulina: ayuda a las células a dividirse y, por ello, también es necesaria para la reproducción del parásito.

La idea se basa en la investigación de tumores previamente estudiada: bloquear la proteína tubulina en las células cancerosas evita que se dividan con éxito y, por lo tanto, se multipliquen. Durante mucho tiempo, los médicos han utilizado este análisis con éxito en la quimioterapia y en la inyección de inhibidores de la tubulina en los pacientes.

En la investigación oncológica, la proteína se conoce desde siempre, pero ha recibido poco interés en la parasitología. Sin embargo, los investigadores del PSI, Natacha Gaillard y Ashwani Sharma, han extendido este concepto a los parásitos unicelulares, incluido al agente causante de la malaria (Plasmodium sp) y de la toxoplasmosis (Toxoplasma gondii). Sus células también necesitan la tubulina para dividirse, y según dice el investigador Sharma, cuando esta proteína deja de funcionar como debería, ataca a los parásitos de forma agresiva. Por lo tanto, la tubulina es un buen objetivo farmacológico.

Los agentes causantes de la malaria y la toxoplasmosis pertenecen a los Apicomplexa, un grupo de parásitos unicelulares eucariotas. Sus células contienen un verdadero núcleo eucariota y se reproducen tanto de forma sexual como asexual. Este tipo de agente utiliza a los humanos o a los animales como huéspedes o intermediarios ya que todos los eucariotas producen la proteína tubulina. En ellos causan enfermedades infecciosas que infectan a millones de personas cada año. En forma de filamentos largos, atraviesa las células como una especie de andamio y que durante la división celular, se forma en una zona del  núcleo que separa los cromosomas y los distribuye entre dos células hijas.

Para encontrar y prevenir las sustancias activas contra la tubulina de dichos parásitos, es necesario conocer la estructura exacta de la proteína. Por lo tanto, los investigadores de PSI aislaron la tubulina de células de un protozoo ciliado llamado Tetrahymena thermophila, descubriendo que su proteína es prácticamente idéntica a la Apicomplexa. Esto además les ahorró tener que trabajar con el patógeno de la malaria en el laboratorio al ser muy parecidas.

Usando los avances científicos actuales, los investigadores consiguieron descifrar la estructura molecular de la proteína. Luego buscaron un compuesto químico que pudiera inhibirla. Una base de datos de sustancias presentó cinco candidatos como posibles agentes activos (su eficacia se comprobó en el laboratorio). Los investigadores llamaron al compuesto químico "parabulina", que previene la formación de filamentos proteicos largos y estables de tubulina. Por lo tanto, también previene la división celular.

La parabulina bloquea completamente la proteína en el punto en que los medicamentos contra el cáncer se unen a la tubulina humana de manera similar, produciendo esperanzas para el futuro de la medicina. Los socios colaboradores de PSI de la Universidad de California (EE. UU), probaron el compuesto en Toxoplasma gondii en células humanas. De hecho, el parásito ya no puede reproducirse y además la parabulina casi no tiene ningún efecto sobre las células humanas. “Es una buena señal: la sustancia parece actuar exclusivamente sobre la tubulina del parásito, que es un requisito básico previo para su uso como fármaco contra enfermedades infecciosas”, explica Sharma.

Es razonable suponer que la parabulina es eficaz no solo contra Toxoplasma gondii, sino también contra todos los representantes de Apicomplexa, incluido el patógeno que causa la malaria.

El PSI ha presentado una patente y planea continuar probando la parabulina en el laboratorio y luego convertirla en un medicamento con el apoyo de la industria farmacéutica.

Fuentes: Química, EMBO Molecular Medicine, Equipos y Laboratorio.


¿TENDREMOS NEURONAS TODA LA VIDA?

La existencia de células madre en el cerebro humano adulto todavía no había sido confirmada. El equipo de la bióloga María Llorens-Martín en el centro de Biología Molecular Severo de Ochoa ha demostrado la existencia de células madre en la región del cerebro humano adulto denominada hipocampo.

El incremento de estas células permitieron la generación de nuevas neuronas a lo largo de toda la vida, proceso conocido como la neurogénesis hipocampal adulta .

El trabajo del equipo nombrado anteriormente, reveló que las alteraciones en este proceso de neurogénesis están relacionadas con el funcionamiento de un nicho celular del hipocampo que no se conocía en nuestra especie , dicha estructura se transforma en un ambiente hostil para el nacimiento y la maduración de las nuevas neuronas durante el envejecimiento fisiológico y patológico.

Los resultados obtenidos por: investigadoras del Consejo Superior de Investigaciones Científicas , con la colaboración de investigadores de la Universidad Autónoma de Madrid , Fundación CIEN , Universidad Europea de Madrid y CONICET , permitieron el conocimiento del cerebro humano, como asentar las bases para el desarrollo futuro de herramientas terapéuticas y de regeneración que permitan frenar el avance de enfermedades neurodegenerativas.

¿Es posible en el cerebro adulto la generación de nuevas neuronas a partir de células madres? La respuesta a dicha pregunta es sí , gracias a la existencia de un nicho celular que está especializado , por una compleja estructura formada por células gliales y vasos sanguíneos , y que está presente en muy pocas partes del cerebro, una de ellas el hipocampo. 

La existencia y composición celular de dicho nicho en el ser humano eran totalmente desconocidas hasta el momento. El trabajo realizado cuenta que tanto este nicho como el proceso de neurogénesis adulta en el que se genera las nuevas neuronas, siguen sufriendo cambias a lo largo de toda la vida.

Los investigadores han descubierto el funcionamiento de las células de microglía , tipo celular del sistema inmune que está encargado de regular el número y la maduración de las nuevas neuronas que se generan en el hipocampo , suele estar dañado en personas de avanzada edad.

Los investigadores afirman que todo esto hace que el proceso de neurogénesis hipocampal adulta disminuya a lo largo del envejecimiento , aunque tiene lugar hasta la décima década de edad.

El nacimiento de neuronas en el hipocampo necesita una gran cantidad de remodelación y adaptación al cerebro de los mamífero, plasticidad neuronal . Este hipocampo también presenta gran variabilidad de enfermedades neurodegenerativas y psiquiátricas.

Se cuenta que el proceso de neurogénesis hipocampal adulta se encuentra muy dañado en pacientes con ELA, enfermedad de Huntington, Parkinson, demencia con cuerpos de Lewy y demencia frontotemporal.

Cada una de las enfermedades anteriores, dañan a determinadas sub-poblaciones celulares que forman parte del proceso de neurogénesis hipocampal adulta , por ello algunas poblaciones celulares son más débiles a determinadas enfermedades que a otras.

Todo este descubrimiento ha sido posible gracias a la utilización de muestras cerebrales humanas de la mayor calidad y excelente grado de conservación , por ejemplo , el perfeccionamiento de sofisticadas técnicas de laboratorio desarrolladas por los investigadores del laboratorio de la Dra. Llorens-Martín.

El trabajado ha sido costeado por distintos organismos nacionales e internacionales ,destacan: el European Research Council mediante un proyecto, el Ministerio de Ciencia e Innovación y la asociación de alzheimer.

HALLAN NUEVA PROTEÍNA QUE MATA CÉLULAS CANCEROSAS CEREBRALES

Los investigadores han descrito cómo una sustancia llamada gosipol permite que las células de glioblastoma, (un tipo de cáncer cerebral incurable), pueden ser eliminadas.

Un equipo de investigación coordinado por la Universidad Autónoma de Barcelona (UAB) ha conseguido activar una proteína clave para completar el proceso de muerte por apoptosis de las células de glioblastoma.

La apoptosis es el mecanismo por el que las células defectuosas del cuerpo promueven su propia muerte para proteger al organismo, pero en algunas células, aunque la apoptosis comienza, se detiene en una de las etapas, permitiendo que la célula pueda sobrevivir.

En un trabajo anterior, los investigadores ya habían demostrado que las células de glioblastoma tienen niveles demasiado bajos de DFF40/CAD, una proteína que organiza la ruptura del núcleo de la célula, esta carencia hace que la fase de fragmentación nuclear no se complete y la célula pueda recuperarse.

Según ha explicado la investigadora Laura Martínez-Escardó, primera autora del trabajo, han administrado en las células tumorales una sustancia derivada de la planta del algodón, el perripolo, que potencia la actividad de DFF40/CAD, y el resultado es que, en las células tratadas, el proceso de fragmentación se completa y la célula muere.



Al contrario de otros fármacos, el perripolo permite que la DFF40/CAD se mantenga en el núcleo celular durante más tiempo, promoviendo su fragmentación, promover que la apoptosis finalice adecuadamente en las células tumorales de los pacientes podría ser una buena estrategia terapéutica para tratar el cáncer.

"Estos resultados nos ayudan a comprender mejor la biología de este agresivo tumor y nos pueden proporcionar nuevas herramientas para desarrollar estrategias más eficaces para un cáncer hasta ahora incurable", dijo el coordinador de este experimento.

LA NOVEDOSA TÉCNICA DE MICROSCOPÍA NOS MUESTRA LAS CÉLULAS COMO NUNCA ANTES


Recientemente, dos equipos del EPFL (Instituto Tecnológico Suizo de Lausanne) han descubierto un método para poder grabar células vivas al microscopio. Este invento se cree que podría, no solo facilitar la docencia, sino que además ayudarnos a comprender mecanismos de los seres vivos que hoy en día no entendemos

Georg Funter, uno de los investigadores y el director del bio y nano-instrumentador del EPFL, afirma que el mayor problema de la microscopia moderna es que para poder observar a células a buena resolución, era necesario matarlas, ya que necesitaba de un microscopio electrónico, el cual mata a estas. La otra opción era uno fluorescente, este, pese a no matar a las células, tiene una resolución bastante más baja, por lo que resulta imposible mirar en las 3 dimensiones con este.

El método desarrollado por estos investigadores une 2 técnicas que permiten tanto ver la superficie como el interior, y su actividad molecular de la célula sin matarla. Uno de estos se llama "stochastic optical fluctuation imaging" (SOFI) y la otra “scanning ion conductance microscopy” (SICM).El primero permite registrar  moléculas y su actividad dentro de la célula. El segundo permite producir un mapa tridimensional  de una célula tocando virtualmente su superficie con un flujo emitido por un nanoporo cristalino. Este flujo de iones  es capaz de "tocar" la superficie de la célula sin tocarla. 


Estas dos técnicas, afirman, les permiteque la célula sea observada mientras realiza o experimenta varios procesos vitales.  Según el estudiante de doctorado Samuel Mendes Leitão  - otro investigador y desarrollador  del sistema - la membrana celular es el lugar  donde "ocurren muchos cambios biológicos y morfológicos , como cuando hay una infección ".  
 
 Su sistema, dice, permite  ver qué hay dentro de una célula infectada y  al mismo tiempo los cambios producidos en la membrana celular. Según Mendes  Leitão y el desarrollador de los componentes del sistema óptico, el candidato  del Dr. Vytautas Navikas, el sistema permite  ver los procesos en vivo durante períodos de una fracción  de un segundo o varios días. resolución sin precedentes. 





 Fuentes: EPFLEl Confidencial

NUEVO POSIBLE TRATAMIENTO CONTRA ENFERMEDADES COMO EL CÁNCER, EL ALZHÉIMER O EL PÁRKINSON


El investigador del Instituto de Biología Genómica y Funcional, conjunto de la 
Universidad de Salamanca y del CSIC, Rubén Cabrera, participó en el descubrimiento del mecanismo por el que se “asfixian” las células de sobreviven, lo que proporciona nuevas vías para la investigación y el tratamiento de enfermedades como la enfermedad de Parkinson, la enfermedad o el cáncer.

Quintana Cabrera ha publicado en la revista Nature Communications resultado de un proyecto de investigación liderado por el profesor de la Universidad de Padua, Luca Scorrano, en el que también participaron científicos del Centro Nacional de Investigaciones cardiovasculares. 

Esta publicación explica cómo la arquitectura de las mitocondrias actúa sobre las consecuencias negativas de la ausencia de respiración celular, que por lo tanto, la vida útil de las células. 

Quintana destacó la importancia de ahorrar tiempo por el daño que se produce cuando el tejido carece de oxígeno, que, como en la mayoría de los seres vivos, si se prolonga “puede ser irreversible”. 

"Hay mecanismos de emergencia que permiten tratar las células respiratorias en de tejidos tan importantes como el cerebro o el corazón" afirma ella.

Así, las mitocondrias, la parte de la célula responsable de la respiración para producir energía, pueden revertir temporalmente la relación, para evitar la necrosis y muerte de la cual ocurre en ausencia de la respiración celular normal, explicó.
 
La investigación ha revelado que los pliegues o la membrana interna de mitocondrias, en las que se encuentra la maquinaria respiratoria, son responsables de la protección contra el daño causado por insuficiencia respiratoria. 


Como USAL señaló ahora después de la publicación, los participantes del proyecto observaron que la proteína Opa1, para determinar la estructura de las crestas mitocondriales, "promovió la actividad de" la ATPasa ", 
el motor que produce energía en la célula. 

Entonces, en la insuficiencia respiratoria, una " ATPasa" preparada para revertir la actividad mitocondrial normal extiende la viabilidad de las mitocondrias y, con ella, de la célula, informó. 


La investigación revela "un mecanismo celular hasta ahora desconocido" con grandes posibles aplicaciones futuras, los autores destacan que el descubrimiento realizado abre "nuevas terapéuticas" para actuar frente a enfermedades en las que de por medio un fallo mitocondrial, así como para un infarto del Asimismo, "aunque con un carácter todavía básico", la USAL asegura que este trabajo abre novedades para la investigación y el tratamiento de enfermedades como la enfermedad de Parkinson, la enfermedad de Alzheimer o el Cáncer. 

DERIVA DE UN ASTEROIDE DE SU ÓRBITA

 La misión de la NASA DART ha despegado el 26 de noviembre del 2021 a bordo de Falcon 9 de SpaceX, desde la base militar de Vandenberg, California. Será la primera en testar sobre el terreno una técnica de defensa planetaria activa. Los expertos piensan que la forma más eficaz de desviar una amenaza es lanzar una nave para colisionar contra ella y cambiar así su órbita.

DART se estrellará contra Dimorphos, un asteroide de 163 metros de diámetro que es la luna de otro asteroide, Didymos, de 780 metros. Didymos fue descubierto en 1996 desde los telescopios del desierto de Sonora, en Arizona. No es un peligro real para la Tierra, sino sólo el primer candidato escogido para probar y afinar la técnica

Rafael Bachiller, director del Observatorio Astronómico Nacional y miembro de la Real Academia de Doctores en España, valora: "Es preferible probar estas tecnologías mientras no tenemos ningún asteroide grande que suponga un peligro inmediato para nuestro planeta, de forma que podamos adelantarnos a los acontecimientos con tiempo".   "Aunque pequeña, la probabilidad de que caiga una gran roca cada cierto tiempo no es nula. Conviene estar preparados".



DART, impactará contra la pequeña luna asteroide a una velocidad de 6,6 kilómetros por segundo. Esto ocurrirá a finales de septiembre de 2022, cuando el sistema Didymos se encuentre en su punto orbital más cercano a la Tierra, a unos 11 millones de kilómetros.

La misión costará alrededor de 324 millones de dólares, sin contar gastos del lanzamiento.

Ninguno de los asteroides presentan amenaza para la Tierra, la colisión permitirá copilar nuestras capacidades de modelado y predicción de la deflexión de asteroides. La colisión será posible gracias a la cámara que va a bordo de la nave, llamada DRACO,  que usa un complejo sistema de navegación autónoma. Envían los datos en directo a la Tierra. Todo con el  fin de destruirse. 

LICIACube, es un satélite de la Agencia Espacial Italiana,  se separará de la nave principal para captar en imágenes el momento del impacto y de la pluma de eyección elaborada.


VIRUS DE LA GRIPE EN LA LECHE DE VACA PASTEURIZADA

Un equipo de científicos de la Universidad de Wisconsin-Madison ha descubierto por primera vez la presencia de virus de gripe aviar altament...