los científicos han iluminado la historia evolutiva
de las neuronas centrando su investigación en los
placozoos, que son organismos marinos diminutos.
Estos hallazgos ofrecen información valiosa sobre
las primeras etapas del desarrollo neurológico en el reino animal.
Los placozoos son criaturas fascinantes. Son increíblemente simples y minúsculos, aproximadamente del tamaño de un gran grano de arena, y habitan principalmente en mares cálidos y poco profundos. Estos peculiares organismos se alimentan de algas y microorganismos que prosperan en las superficies de las rocas y otros sustratos. Una de las características más notables de los placozoos es su falta de partes u órganos corporales distintos, lo que los convierte en una de las formas de vida más simples del reino animal.
Los placozoos ocupan un lugar especial en el árbol evolutivo. Son uno de los cinco linajes animales principales y han existido en la Tierra desde hace aproximadamente 800 millones de años. Los otros cuatro linajes principales incluyen Ctenophora (medusas), Porifera (esponjas), Cnidaria (corales, anémonas de mar y medusas) y Bilateria (que comprende todos los demás animales más complejos).
La revelación de este estudio es que los investigadores encontraron evidencia convincente que sugiere que las células secretoras especializadas en los placozoos comparten similitudes con las neuronas, que son responsables de transmitir señales en los sistemas nerviosos de animales más complejos. Este hallazgo plantea la posibilidad de que las neuronas de animales más avanzados hayan evolucionado a partir de estas células placozoarias.
Para llegar a estas conclusiones, los científicos emplearon técnicas moleculares y modelos computacionales. Crearon mapas celulares detallados, conocidos como "atlas celulares", para documentar varios tipos de células placozoarias y sus respectivas características genéticas. Además, mapearon las regiones reguladoras del ADN que controlan estos módulos genéticos. Estos mapas proporcionaron una imagen de las funciones de las diferentes células placozoarias y de cómo trabajan juntas en armonía.
El estudio demostró que los nueve tipos de células primarias en los placozoos están interconectados por tipos de células intermedias que pasan de un tipo de célula a otro. Estas células crecen y se dividen, manteniendo el delicado equilibrio de tipos de células esenciales para el movimiento y la alimentación del animal. Además, los investigadores descubrieron catorce tipos distintos de células peptidérgicas, que eran notablemente diferentes de todas las demás células y no mostraban evidencia de formas intermedias o signos de crecimiento o división.
El estudio demostró que los nueve tipos de células primarias en los placozoos están interconectados por tipos de células intermedias que pasan de un tipo de célula a otro. Estas células crecen y se dividen, manteniendo el delicado equilibrio de tipos de células esenciales para el movimiento y la alimentación del animal. Además, los investigadores descubrieron catorce tipos distintos de células peptidérgicas, que eran notablemente diferentes de todas las demás células y no mostraban evidencia de formas intermedias o signos de crecimiento o división.
Lo que sorprende especialmente es el sorprendente parecido entre estas células peptidérgicas de los placozoos y las neuronas, aunque las neuronas no aparecieron en animales más avanzados hasta muchos millones de años después. Estas similitudes son exclusivas de los placozoos y no aparecen en otros animales de ramificación temprana como esponjas o ctenóforos.
Las similitudes entre las células peptidérgicas y las neuronas son triples. En primer lugar, los investigadores observaron que estas células placozoarias se diferencian de una población de células epiteliales progenitoras a través de señales de desarrollo que recuerdan a la neurogénesis, el proceso mediante el cual se forman nuevas neuronas en cnidarios y bilaterales. En segundo lugar, descubrieron que las células peptidérgicas poseen numerosos módulos genéticos necesarios para construir la parte de una neurona responsable de enviar mensajes (la estructura presináptica). Sin embargo, no son verdaderas neuronas, ya que carecen de los componentes necesarios para recibir un mensaje neuronal (postsináptico) y de la capacidad de conducir señales eléctricas.
Fuentes: Ciencia plus, NaturalistaCO.
No hay comentarios:
Publicar un comentario