viernes, 3 de marzo de 2023

¿LA TECNOLOGÍA Y BIOLOGÍA SERÁN COMPATIBLES?

Con el gel inyectable, los investigadores lograron cultivar electrodos en tejido vivo / Imagen: SINC

Un grupo de científicos de la Universidad de Linköping, la Universidad de Lund y la Universidad de Gotemburgo, todas en Suecia, han cultivado electrodos en tejidos vivos en el cerebro, el corazón y las aletas caudales del pez cebra y alrededor del tejido nervioso de las sanguijuelas medicinales.


Los investigadores han desarrollado con éxito electrodos en tejido vivo, utilizando las moléculas del organismo como activadores. Los resultados aplanan el camino para la formación de circuitos electrónicos totalmente integrados en organismos vivos.


Este avance ha supuesto un cambio para la bioelectrónica. Pues, durante varias décadas se ha intentado crear electrónica que imitara la biología, ahora dejamos que la biología cree la electrónica por nosotros, ya no es necesario “implantar” electrodos en los sistemas biológicos, sino que los mismos pueden crecer y “cultivarse” en el interior de los organismos vivos, inyectando un gel viscoso que inicia los procesos electrónicos en el cuerpo.


Vincular la electrónica al tejido biológico es importante para comprender funciones biológicas complejas, combatir enfermedades cerebrales y desarrollar futuras interfaces entre el hombre y la máquina.

Para salvar esta brecha entre biología y tecnología, los investigadores desarrollaron un método para crear materiales blandos, sin sustrato y conductores electrónicos en tejidos vivos.


El nuevo método creado por los especialistas permite desarrollar materiales conductores electrónicos suaves, sin sustrato y en tejido vivo. Inyectando un gel que contiene enzimas que actúan como moléculas de ensamblaje, luego de ser inyectado entra en contacto con las moléculas endógenas del cuerpo. En ese momento, se vuelve azul e indica su conversión exitosa como conductor eléctrico. El contacto con las sustancias del cuerpo modifica la estructura del gel y lo hace eléctricamente conductor, una propiedad que no poseía antes de la inyección. Dependiendo del tejido, también se puede ajustar la composición del gel para poner en marcha el proceso eléctrico. El equipo logró formar electrodos en el cerebro, el corazón y las aletas caudales del pez cebra y alrededor del tejido nervioso de las sanguijuelas. Los animales no sufrieron daños por el gel inyectado ni se vieron afectados por la formación de electrodos.

El punto a subrayar, es que las moléculas endógenas del cuerpo bastan para desencadenar la formación de electrodos. No hay necesidad de modificación genética ni de señales externas, como luz o energía eléctrica, que han sido necesarias en experimentos anteriores.

 

Fuentes: Elperiódico, Ecoavant

No hay comentarios:

Publicar un comentario

CHINA PRESENTA LA PRIMERA CLONACIÓN DE LOBO ÁRTICO DEL MUNDO

En el vasto panorama de la biotecnología y la conservación, un nombre brilla con intensidad: Maya, la primera loba ártica clonada. Su histor...