Mostrando entradas con la etiqueta Andrea González Barjola. Mostrar todas las entradas
Mostrando entradas con la etiqueta Andrea González Barjola. Mostrar todas las entradas

sábado, 13 de mayo de 2023

SALVAN UNA PLANTA EN PELIGRO DE EXTINCIÓN

 

 

El área de Botánica del Departamento de Biología de la Universitat de les Illes Balears ha realizado el seguimiento de la introducción en la Serra de Tramuntana de la 'lletrera del Massanella' ('Euphorbia fontqueriana greuter') una planta de Mallorca en peligro de extinción. La reducida área de distribución de la especie y el pequeño tamaño de su población han hecho que la especie haya sido catalogada en peligro de extinción.

La lletrera del Massanella (Euphorbia fontqueriana) es una especie vegetal endémica del macizo de Massanella que habita entre los 900 y los 1.200 metros de altitud y consta de una sola población natural, ubicada en el Coll des Prat.

El Servicio de Protección de Especies de la Dirección General de Espacios Naturales y Biodiversidad llevó a cabo, en 2014, una prueba piloto para trasladar la especie a otra localidad de la sierra de Tramuntana, en la zona del Puig Maguey.

Esta primavera, el grupo de investigación Plantmed de la UIB ha descubierto aspectos clave desconocidos de la biología reproductiva de la planta. Los científicos del grupo de investigación, Joana Cursach y Antoni Josep Far, han publicado un estudio en la revista científica “Plant Biosystems” acerca de aspectos básicos sobre la biología reproductiva de esta planta desconocidos hasta ahora.

El trabajo proporciona datos que serán “muy útiles para la gestión y conservación de esta especie”, destaca la UIB en un comunicado, sobre esta investigación, que ha contado con el apoyo de la Fundación Biodiversidad, del Ministerio para la Transición Ecológica.

 

La especie tiene menos de 2.000 plantas y un porcentaje reducido de reproductores (menos del 10 %).

Se trata de una planta perenne de pocos centímetros de altura que florece a finales de primavera. Presenta tallos subterráneos que permiten la reproducción asexual. Las flores (unisexuales) se reúnen en una estructura característica llamada ciatio, con glándulas nectaríferas de color morado, por lo que la especie no pasa desapercibida en el momento de la floración.

En esta investigación, se ha observado que se trata de una especie con ejemplares masculinos (ciatios de flores masculinas) y otros hermafroditas. Estos últimos presentan flores dispuestas en ciatios hermafroditas (con flores masculinas y una central femenina) y otras funcionalmente masculinas (la flor central femenina no se desarrolla).

El conocimiento del sistema sexual, junto con el análisis de varios índices de sincronía floral, tanto en el ámbito de población como de individuo, arrojan luz para poder inferir el sistema de cruce en esta especie.

Los investigadores señalan que los tratamientos experimentales de polinización y las observaciones in situ llevados a cabo indican que la especie depende de los insectos para realizar la polinización, y que la producción de semillas por rama florífera es extremadamente baja.

Las semillas presentan dormición (falta de germinación en espera del momento adecuado). La germinación y la supervivencia de plantas en el campo durante el primer año son muy bajas.

Finalmente, los investigadores indican que la reducida regeneración por reproducción sexual hace que la supervivencia de los individuos adultos sea clave a largo plazo.

Fuentes: Última hora, EFEverde.

sábado, 29 de abril de 2023

¿LA FOTOSÍNTESIS, LA NUEVA ENERGÍA SOSTENIBLE?

 

 

 

Los investigadores Yaniv Shlosberg, Gadi Schuster y Noam Adir han recurrido a la fotosíntesis para generar electricidad. Todo esto posible gracias a la financiación de una beca «Nevet» del Programa de Energía del Gran Technion (GTEP) y una beca VPR Berman del Technion para la Investigación Energética, así como el apoyo del Laboratorio de Investigación de Tecnologías del Hidrógeno (HTRL) del Technion. 

Aunque las plantas pueden servir como fuente de alimento, oxígeno, no se consideran una fuente de electricidad muy efectiva. Pero recogiendo los electrones transportados de forma natural por las células vegetales, los científicos pueden generar electricidad como parte de una célula solar biológica "verde". Una nueva investigación utiliza por primera vez una planta para crear una «célula biosolar» viva que funciona mediante fotosíntesis. 

En todas las células vivas, los electrones se mueven como parte de procesos bioquímicos naturales. Si hay electrodos, las células pueden generar electricidad que puede utilizarse externamente. Previos investigadores habían creado pilas de combustible de este tipo con bacterias, pero los microbios tenían que ser alimentados constantemente. En cambio, estos científicos, han recurrido a la fotosíntesis para generar corriente. En el proceso, la luz impulsa un flujo de electrones procedentes del agua que da lugar a la generación de oxígeno y azúcar. Es decir, las células fotosintéticas vivas producen un constante flujo de electrones que puede extraerse como "fotocorriente" y utilizarse para alimentar un circuito externo, igual que una célula solar.

Plantas, como las suculentas, que habitan los entornos áridos, es decir, plantas en las que algún órgano está especializado en el almacenamiento de agua, tienen gruesas cutículas que mantienen el agua y los nutrientes en el interior de sus hojas. Los expertos querían probar, por primera vez, si la fotosíntesis en las suculentas podría crear energía para células solares vivas, utilizando su agua y nutrientes internos como solución electrolítica de una célula electroquímica.

Crearon una “célula solar viva” utilizando la suculenta Corpuscularia lehmannii, también llamada «planta de hielo». Insertaron un ánodo de hierro y un cátodo de platino en una de las hojas de la planta y comprobaron que su voltaje era de 0,28 V. Cuando se conectaba a un circuito, producía hasta 20 µA/cm² de densidad de fotocorriente cuando se exponía a la luz y podía seguir produciendo corriente durante más de un día.

A pesar de que las cifras son inferiores a las de una pila alcalina tradicional, son representativas de una sola hoja. Estudios sobre dispositivos orgánicos similares sugieren que conectar varias hojas en serie podría aumentar el voltaje. El equipo diseñó específicamente la célula solar viva, de modo que los protones de la solución interna de la hoja pudieran combinarse para formar hidrógeno gaseoso en el cátodo, y este hidrógeno pudiera recogerse y utilizarse en otras aplicaciones.

Este método podría permitir el desarrollo de futuras tecnologías energéticas, verdes, sostenibles y multifuncionales.

Fuentes:Smartlighting, Química.es

viernes, 14 de abril de 2023

¿UN FUTURO SIN GAMETOS?

 

 

 

 

Un grupo de científicos del Instituto Tecnológico de California y de la Universidad de Cambridge de Inglaterra consiguieron crear un modelo de embriones sintéticos de ratón a partir de células madre, sin necesidad de óvulos y espermatozoides. Los investigadores lograron reproducir las primeras etapas del desarrollo de un ratón, han conseguido crear embriones que desarrollaron un cerebro, un corazón que late, así como los cimientos para la posterior formación de los demás órganos del cuerpo. Este estudio ha despertado el interés médico, pero también supone un choque entre la moral y la ciencia. 

Lo que el equipo de Zernicka-Goetz(profesora de desarrollo de mamíferos y biología de células madre en el departamento de Fisiología, Desarrollo de y Neurociencia de la Universidad de Cambridge) ha creado son un conjunto de embriones de ratón sin la necesidad de células germinales, es decir, óvulos o espermatozoides. En su lugar, lo que emplearon fueron células madre, las células maestras del cuerpo que pueden convertirse en casi cualquier tipo de célula del organismo. Para lograr el objetivo, los investigadores guiaron a interactuar a los tres tipos de células madre que se encuentran en el desarrollo temprano de los mamíferos. Al inducir la expresión de un conjunto particular de genes y establecer un entorno único para sus interacciones, los investigadores lograron que las células madre se comunicaran entre sí, logrando que al combinarse e interactuar entre ellas formaron una estructura biológica semejante a la que tendría un embrión de ratón a los ocho días de gestación.

Lo sorprendente de este descubrimiento es que los embriones sintéticos tenían una estructura similar a los naturales, con un corazón latiendo, un saco amniótico, un tubo neural y un cerebro. Las células madre se autoorganizaron en estructuras que progresaron a través de las sucesivas etapas de desarrollo hasta que formaron corazones latiendo, los cimientos del cerebro y el saco vitelino, es decir, el lugar donde el embrión se desarrolla y obtiene nutrientes en sus primeras semanas de vida.



A diferencia de otros embriones sintéticos, los modelos desarrollados por Cambridge llegaron al punto en que todo el cerebro, comenzó a desarrollarse.
Estos resultados podrían ayudar a los investigadores a entender los motivos por los cuales algunos embriones no terminan de desarrollarse, mientras que otros culminan en un embarazo saludable.

Para que un embrión humano se desarrolle correctamente, debe haber un "diálogo" entre los tejidos que se convertirán en el embrión y los tejidos que conectarán el embrión con la madre. Esto sucede en la primera semana después de la fertilización, donde desarrollan tres tipos de células madre: unas que se convertirán en los tejidos del cuerpo; y las otras dos se convertirán respectivamente en la placenta, que conecta al feto con la madre y proporciona oxígeno y nutrientes, y en el saco vitelino, donde crece el embrión y de donde obtiene sus nutrientes en el desarrollo temprano.

El porqué algunos embarazos fracasan y otros tienen éxito, es precisamente uno de los aspectos que Zernicka-Goetz y su equipo pretenden averiguar. Los investigadores descubrieron que las células extraembrionarias envían señales a las células embrionarias mediante señales químicas, pero también mecánicamente o mediante el tacto, guiando el desarrollo del embrión.

Otro de los puntos a destacar de este estudio fue la capacidad de desarrollar todo el cerebro. Esta parte del cerebro requiere señales de uno de los tejidos extraembrionarios para poder desarrollarse. Ahora, al impulsar el desarrollo durante un día más, pueden decir definitivamente que su modelo es el primero en señalar el desarrollo del cerebro anterior y, de hecho, de todo el cerebro.

Fuentes: National Geographic, Unam Global

viernes, 3 de marzo de 2023

¿LA TECNOLOGÍA Y BIOLOGÍA SERÁN COMPATIBLES?

Con el gel inyectable, los investigadores lograron cultivar electrodos en tejido vivo / Imagen: SINC

Un grupo de científicos de la Universidad de Linköping, la Universidad de Lund y la Universidad de Gotemburgo, todas en Suecia, han cultivado electrodos en tejidos vivos en el cerebro, el corazón y las aletas caudales del pez cebra y alrededor del tejido nervioso de las sanguijuelas medicinales.


Los investigadores han desarrollado con éxito electrodos en tejido vivo, utilizando las moléculas del organismo como activadores. Los resultados aplanan el camino para la formación de circuitos electrónicos totalmente integrados en organismos vivos.


Este avance ha supuesto un cambio para la bioelectrónica. Pues, durante varias décadas se ha intentado crear electrónica que imitara la biología, ahora dejamos que la biología cree la electrónica por nosotros, ya no es necesario “implantar” electrodos en los sistemas biológicos, sino que los mismos pueden crecer y “cultivarse” en el interior de los organismos vivos, inyectando un gel viscoso que inicia los procesos electrónicos en el cuerpo.


Vincular la electrónica al tejido biológico es importante para comprender funciones biológicas complejas, combatir enfermedades cerebrales y desarrollar futuras interfaces entre el hombre y la máquina.

Para salvar esta brecha entre biología y tecnología, los investigadores desarrollaron un método para crear materiales blandos, sin sustrato y conductores electrónicos en tejidos vivos.


El nuevo método creado por los especialistas permite desarrollar materiales conductores electrónicos suaves, sin sustrato y en tejido vivo. Inyectando un gel que contiene enzimas que actúan como moléculas de ensamblaje, luego de ser inyectado entra en contacto con las moléculas endógenas del cuerpo. En ese momento, se vuelve azul e indica su conversión exitosa como conductor eléctrico. El contacto con las sustancias del cuerpo modifica la estructura del gel y lo hace eléctricamente conductor, una propiedad que no poseía antes de la inyección. Dependiendo del tejido, también se puede ajustar la composición del gel para poner en marcha el proceso eléctrico. El equipo logró formar electrodos en el cerebro, el corazón y las aletas caudales del pez cebra y alrededor del tejido nervioso de las sanguijuelas. Los animales no sufrieron daños por el gel inyectado ni se vieron afectados por la formación de electrodos.

El punto a subrayar, es que las moléculas endógenas del cuerpo bastan para desencadenar la formación de electrodos. No hay necesidad de modificación genética ni de señales externas, como luz o energía eléctrica, que han sido necesarias en experimentos anteriores.

 

Fuentes: Elperiódico, Ecoavant

¿ADIÓS A LAS CÉLULAS CANCEROSAS?

Científicos de Johns Hopkins Medicine han desarrollado un pro-fármaco a partir de un medicamento contra el cáncer que no llegó a la práctica clínica debido a su toxicidad. 

Un pro- fármaco es un compuesto inactivo que se metaboliza en el organismo, por lo que actúa como un medicamento después de su administración y se puede utilizar para mejorar la absorción y distribución de un fármaco concreto.  

El denominado DRP-104, es un pro-fármaco del fármaco imitador de la glutamina llamado DON que inhibe múltiples enzimas que emplean glutamina en células cancerígenas. En los inicios del estudio de DON se demostró que era muy eficaz en personas y ratones, pero su desarrollo se detuvo debido a que era tóxico para los tejidos normales, especialmente para el intestino. 

Según los científicos que llevaron a cabo este experimento, su objetivo era modificar un antiguo fármaco contra el cáncer que había demostrado gran eficacia, pero era demasiado tóxico. Usaron un diseño químico novedoso para crear un pro-fármaco que se bío-activó simultáneamente en células cancerosas, pero se bío-inactivó en tejidos sanos como el intestino. Esta preferencia del compuesto a eliminar las células cancerosas ha permitido que este tipo de medicamentos se revalúe de manera segura en personas. El DRP-104 se encuentra ahora en ensayos clínicos, en pacientes con tumores sólidos avanzados, en ensayos clínicos de fase I/II en Estados Unidos. Bajo la designación Fast Track de la FDA.

El pro-fármaco modificado aprovecha una característica de las células cancerosas, que es su necesidad del aminoácido glutamina, que resulta crucial para la formación de proteínas, lípidos, nucleótidos y energía. Las células cancerosas de rápido crecimiento emplean mucha cantidad de glutamina, este fenómeno se conoce como ''adicción a la glutamina''.  

Para ocasionarlo, los expertos agregaron unos grupos químicos, llamados promotores, al DON, lo que provocó su inactivación en el cuerpo hasta llegar al tumor, donde los promotores fueron cortados por enzimas abundantes en el tumor, pero no en el intestino. Esto hizo que el DON se dirigiera al tumor y tuviera un impacto de menor grado en las células sanas. 

 

Estos investigadores administraron ambos fármacos en ratones a los que se les implantaron tumores. Se demostró que los ratones que recibieron DRP-104 tenían 11 veces más fármaco activo en el tumor en comparación con el tracto gastrointestinal (intestino). El DRP-104 afectó a múltiples vías metabólicas en el tumor, incluyendo la disminución del flujo de glutamina en el ciclo TCA. El efecto del DRP-104 fue dependiente de las células T CD8 + y dio lugar a una sólida memoria inmunológica.

Aunque los dos fármacos eliminaron el tumor por completo, el DON generó más toxicidad intestinal en los animales que el DRP-104. El DRP-104 es el primer pro-fármaco de su clase con un metabolismo diferencial en el tejido diana y en el tejido tóxico.

Fuentes:Webconsultas, ScienceAdvances

sábado, 25 de febrero de 2023

¿UNA ENZIMA SALVADORA?

Un equipo de investigadores del CSIC junto con dos investigadores de la Universidad de Burgos, han trabajado en el desarrollo de la investigación sobre las enzimas que contiene el gusano de cera, que degrada el plástico, lo que podría tener numerosas aplicaciones en el tratamiento o reciclaje de residuos plásticos. Los resultados del trabajo se han publicado en preprint (publicado en Nature Communications el 4 de octubre de 2022). El estudio ha contado con financiación de la Fundación Roechling (Alemania).

Esta investigación se inició cuando Federica Bertocchini(directora de este estudio), aficionada a la apicultura, al limpiar y transportar los gusanos de una colmena infestada, descubrió que las larvas comenzaban a hacer agujeros en una bolsa de basura de plástico.

La saliva de Galleria mellonella larvae (gusanos de cera) es capaz de oxidar y despolimerizar el polietileno (PE), uno de los plásticos derivados de la poliolefina más producidos y resistentes. Este efecto se consigue después de unas horas de exposición a temperatura ambiente en condiciones fisiológicas (pH neutro).

 La saliva del gusano de cera puede superar el paso de cuello de botella en la biodegradación de PE y acelerar su descomposición. Dentro de la saliva se identificaron dos enzimas, bautizadas como Demetra y Ceres, pertenecen a la familia de las enzimas fenol-oxidasas, que pueden reproducir el mismo efecto que la saliva íntegra del gusano. Hasta donde sabemos, estas enzimas son las primeras enzimas animales con esta capacidad, lo que abre el camino a posibles soluciones para gestión de residuos plásticos a través del biorreciclaje/reciclado.

Con posterioridad, en colaboración con varios grupos de investigadores, entre los que se encuentra la doctora Pilar Castroviejo y el profesor Tomás Torroba, demostraron que la saliva de los insectos puede ser un depósito de enzimas activos que revolucionará la degradación de desechos plásticos contaminantes. Como el polietileno, que es uno de los plásticos más resistentes y utilizados. Junto al polipropileno y al poliestireno, integran el 70% de la producción total de plásticos y, por lo tanto, conforman la mayor parte de la contaminación por plásticos que supone una amenaza para la salud y el medioambiente del planeta.

Este hallazgo ha sido todo un éxito debido a que para degradar el plástico es necesario que el oxígeno penetre en el polímero (en la molécula de plástico). Este primer paso de oxidación, que normalmente es resultado de la exposición a la luz solar o a altas temperaturas, es un cuello de botella que ralentiza la degradación de plásticos. Por eso, en condiciones ambientales normales, el plástico tarda meses o años en degradarse.

Por lo tanto, dados los cientos de millones de toneladas de desechos plásticos que se acumulan y el ritmo aún creciente de la producción de plástico. La utilización de estos tipos de gusanos o sus enzimas, es un camino necesario para aliviar la gravedad del problema de la contaminación plástica y, al mismo tiempo, poner a disposición de la sociedad un enorme potencial.

Fuentes: Burgosconecta, CSIC

miércoles, 26 de octubre de 2022

¿KEVLAR O QUITINA? ¿CUÁL ELIGES?

Dado la preocupante situación climática. Expertos han tratado de imitar materiales sintéticos cómo el Kevlar para que, al momento de eliminarse, no generar productos de desecho nocivos.

El Kevlar es un material altamente resistente que se convirtió en la base de los chalecos antibalas, aunque también en la base de otros revestimientos de protección, salvando innumerables vidas. Aunque no todo de este compuesto químico es fabuloso. Es un material sintético, altamente contaminante y tóxico en los procesos de fabricación, caros y difíciles de reciclar. Para producir el Kevlar se necesita disolver fragmentos de fibras llamadas poliaminas en un disolvente y luego de revolver el líquido para formar la fibra, en un momento dado se forman unos filamentos delgados, opacos y lechosos parecidos a las telas de arañas.

Investigadores de la Universidad de Hudson estudiaron cómo convertir la quitina en un revestimiento de base biológica, biodegradable y de alto impacto para las aplicaciones militares.

La quitina es un hidrato de carbono nitrogenado, de color blanco, insoluble en el agua y en los líquidos orgánicos. Se encuentra en el exoesqueleto de los invertebrados como cangrejos e insectos y en la pared celular de hongos y bacterias. La quitina es el polímero más abundante después de la celulosa. La principal fuente de obtención de este polímero son los desechos de los crustáceos y en los últimos años se ha encontrado un número creciente de aplicaciones en la agricultura, la medicina y el desarrollo de nuevos materiales.

Aunque la investigación tiene como objetivo principal producir recubrimientos multiprotectores para el personal militar, desarrollando una armadura corporal más ligera y resistente, con un revestimiento impreso que pueda protegerlos contra los impactos de proyectiles, láseres, microbios y gas venenoso, también el proyecto podría tener aplicaciones para la industria automovilística, la construcción, entre otras.


Este componente se convierte en quitosano, una fibra menos quebradiza y más fácil de manejar. A pesar de que la mayoría de las veces se extraen de los crustáceos, los investigadores están interesados en desarrollar hongos como fuente de quitosano. Porque permite un proceso de polimerización más consistente y estandarizado para convertir el compuesto en un revestimiento más práctico. Los científicos han estado ajustando la estructura de su superficie atómica para ayudar a que se formen capas funcionales, como un revestimiento duro resistente a los impactos, uno que absorbe el impacto de la energía (como la zona de la deformación de un coche), uno que tiene el gas tóxico usando nanopartículas de carbón y uno para la adherencia.

¡LOS TOPOS HEMBRA TIENEN GENITALES MASCULINOS!

 La anatomía genital de los topos ibéricos hembra tienen muchas características de los genitales masculinos. A diferencia de la mayoría de l...