jueves, 26 de mayo de 2022
EL CRECIMIENTO DE LOS ÁRBOLES NO ESTÁ LIMITADO POR LA FOTOSÍNTESIS
LA FOTOSÍNTESIS NO LIMITA EL CRECIMIENTO DE LOS ÁRBOLES
En el colegio se enseña que los árboles producen su propio alimento mediante la fotosíntesis, tomando la luz del sol, el dióxido de carbono y el agua y convirtiéndolos en hojas y madera. Pero, este proceso no es tan básico porque para convertir el carbono obtenido por la fotosíntesis en madera es necesario que las células de la madera se expandan y dividan. Los árboles obtienen el carbono de la atmósfera a través de la fotosíntesis. Esta es la fuente de carbono de los árboles. Posteriormente gastan ese carbono para construir nuevas células de madera, el sumidero del árbol.
Si el crecimiento del árbol está limitado por la fuente, entonces solo está limitado por la cantidad de fotosíntesis que el árbol puede realizar, y por lo tanto el crecimento de los árboles sería fácil de predecir en un modelo matemático. Por tanto, el aumento del dióxido de carbono en teoría en la atmósfera debería de aliviar esa tensión y permitir que los árboles crezcan más.
Pero, si por el contrario el crecimiento de los árboles está limitado por el sumidero, entonces el árbol solo puede crecer tan rápido como sus células puedan dividirse. Hay muchos factores que pueden afectar directamente a la fotosíntesis y a la tasa de crecimiento celular, como la temperatura y la disponibilidad de agua o nutrientes. Por tanto, si los árboles están limitados por el sumidero, la simulación de su crecimiento debe incluir la respuesta del sumidero a estos factores.
Los investigadores pusieron a prueba esta cuestión comparando las tasas de origen y de sumidero de los árboles en lugares de Norteamérica, Europa, Japón y Australia. Medir las tasas de sumidero de carbono fue relativamente fácil y los investigadores sólo recogieron muestras de árboles que contenían registros de crecimiento. Medir las fuentes de carbono es más difícil, pero posible.
Los investigadores analizaron los datos recogidos en busca de pruebas de que el crecimiento de los árboles y la fotosíntesis fueran procesos vinculados, pero no lo encontraron. Cuando la fotosíntesis aumentaba o disminuía, no se producía un aumento o una disminución paralela del crecimiento de los árboles. Se esperaría un fuerte acoplamiento entre la fotosíntesis y el crecimiento de los árboles en el caso de que el crecimiento de los árboles estuviese limitado por la fuente, pero el hecho de observar mayoritariamente un desacoplamiento es el principal argumento para concluir que el crecimiento de los árboles no está limitado por la fuente.La fuerza de acoplamiento o desacoplamiento entre dos procesos puede situarse en un espectro, por lo que los investigadores se interesaron por las condiciones que conducían a un desacoplamiento más fuerte o más débil. Por ejemplo, una mayor diversidad en un bosque aumenta el acoplamiento, mientras que por otro lado, las copas densas y cubiertas de hojas lo disminuyen.
La principal conclusión es que los modelos de vegetación podrían tener que actualizarse, ya que prácticamente todos estos modelos asumen que el crecimiento de los árboles está limitado por la fuente. Los modelos de vegetación actuales predicen que los bosques prosperarán con un mayor dióxido de carbono atmosférico. Esto tiene implicaciones adicionales puesto que los bosques absorben y almacenan actualmente alrededor de una cuarta parte de nuestras emisiones actuales de dióxido de carbono. Si el crecimiento de los árboles se ralentiza, también lo hará su capacidad de absorber carbono y de frenar el cambio climático.
Fuentes: Heraldo, EuropaPress, DiarioDigitalRD
miércoles, 25 de mayo de 2022
ALIMENTAN UN MICROPROCESADOR MEDIANTE FOTOSÍNTESIS
Este nuevo sistema tiene un tamaño comparable al de una pila AA, está formado por un tipo de alga no tóxica llamada Synechocystis la cual es capaz de recoger de forma natural energía solar mediante la fotosíntesis. La corriente eléctrica que genera este sistema interactúa con un electrodo de aluminio y se usa para alimentar el microprocesador.
Este microprocesador podría fabricarse fácilmente cientos de miles de veces para alimentar un gran número de pequeños dispositivos como parte del internet de las cosas, ya que el sistema está fabricado con materiales comunes, baratos y en gran medida reciclables. Según los científicos investigadores, este sistema es más útil en situaciones fuera de la red o en lugares remotos, donde una pequeña cantidad de energía puede llegar a ser muy beneficiosa.
"La creciente Internet de los objetos necesita cada vez más energía, y creemos que ésta tendrá que provenir de sistemas que puedan generar energía, en lugar de simplemente almacenarla como las baterías", afirma el profesor Christopher Howe, del Departamento de Bioquímica de la Universidad de Cambridge, coautor principal del artículo.
Y añadió: "Nuestro dispositivo fotosintético no se agota como lo hace una pila porque utiliza continuamente la luz como fuente de energía".
En el experimento de prueba, el dispositivo se utilizó para alimentar un Arm Cortex M0+, un microprocesador muy utilizado en los dispositivos. Esta prueba funcionó en un entorno doméstico en condiciones semi exteriores bajo la luz natural y las fluctuaciones de temperatura asociadas, y tras seis meses de producción continua de energía los resultados se presentaron para su publicación.
"Nos impresionó la constancia con la que el sistema funcionó durante un largo periodo de tiempo; pensábamos que se detendría al cabo de unas semanas, pero siguió funcionando", afirma el Dr. Paolo Bombelli, del Departamento de Bioquímica de la Universidad de Cambridge, primer autor del artículo.
El alga crea su propio alimento al realizar la fotosíntesis, por lo que no necesita alimentarse. Y aunque la fotosíntesis requiere de luz, el dispositivo puede seguir produciendo energía incluso durante períodos de oscuridad. Los científicos piensan que esto es debido a que las algas procesan parte de su alimento cuando no hay luz, y esto sigue generando una corriente eléctrica.
Según los investigadores sería poco práctico alimentar trillones de dispositivos con baterías de iones de litio, ya que se necesitaría tres veces más litio del que se produce anualmente en todo el mundo. Los materiales peligrosos que se usan para fabricar dispositivos fotovoltaicos tradicionales tienen grandes efectos medioambientales adversos.
El experimento se trata de una colaboración entre la Universidad de Cambridge y Arm, empresa líder en el diseño de microprocesadores. Arm Research desarrolló el chip de prueba Arm Cortex M0+ ultraeficiente, construyó la placa y creó la interfaz de recogida de datos en la nube presentada en los experimentos.
martes, 24 de mayo de 2022
ARABIDOPSIS THALIANA: LA PRIMERA PLANTA EN SUELO LUNAR
Cincuenta años después, tres de esas muestras se han utilizado para cultivar plantas con éxito. Por primera vez, los investigadores han hecho crecer esta planta resistente y bien estudiada en regolito lunar, pobre en nutrientes (con lo cual algo peor y con más dificultad).
Los científicos eligieron la Arabidopsis thaliana porque es a las plantas lo que las cobayas y ratones de laboratorio son entre los animales, aparte de que esta planta fue el primer vegetal del que se secuenció su genoma.
Entre unas 48 y 60 horas la mayoría de las plantas germinaron después de sembrar las semillas, emergiendo al poco unas pequeñas hojas de entre la tierra lunar. Es algo que no esperaban, reconocieron los científicos. Esto les sirvió para descubrir que los suelos lunares no interfieren en las hormonas y señales que intervienen en la germinación de las plantas.
Pero al sexto día se dieron cuenta de que algo no iba bien. Al podar las plantas para concentrar su estudio en un solo tallo, comprobaron que las podas tenían las raíces atrofiadas, más gordas, retorcidas y cortas que las plantas que habían plantado en tierras terrestres. Y eso pese a que las regaron con agua con los mismos nutrientes.Para determinar de dónde venía ese estrés, los investigadores estudiaron su transcriptona, las moléculas de ARN presentes en las células vegetales. La lectura del transcriptoma fue tan precisa que permitió diferenciar también entre las plantas cultivadas con suelo lunar, pero traído por las distintas misiones, la Apolo 11, la 12 y la 17. Las sembradas en suelo traído por la Apolo 17 presentaban un aspecto general mejor. Por dentro, a nivel genético, se confirmó la diferencia: había menor diferenciación del transcriptoma en las del Apolo 17 que, en las primeras, que se posaron en zonas más viejas o maduras expuestas al viento solar y la radiación cósmica, mientras que esta última trajo el material más protegido y menos maduro.
Fuentes: El País, Urbano Puebla
PLANTAS PARÁSITAS QUE ROBAN GENES
Un estudio basado en rastrear el origen de cada gen del genoma de 17 especies de plantas reveló que 13 de cada 17 especies tenían genes con historia evolutiva distinta.
La causa de este suceso es la transferencia de genes horizontal, es decir, el movimiento de material genético de un organismo al genoma de otra especie. Este tipo de transferencia de genes es común entre microbios y bacterias para obtener resistencia a los antibióticos. Se considera que ha sido un factor de gran importancia en el proceso evolutivo.
Este robo se lleva a cabo mediante unas raíces modificadas llamadas haustorios que penetran en los tejidos de la planta huésped hasta que conecta con su sistema vascular. Gracias al estrecho contacto que se produce entre las células de ambas plantas. De esta manera es como se da la transferencia de genes.
"No vemos muchos ejemplos de transferencia horizontal de genes en organismos complejos como lasplantas, y cuando lo vemos, el material genético transferido generalmente no se usa. En este estudio presentamos el caso más dramático conocido transferencia horizontal de genes funcionales jamás encontrado en organismos complejos"
Aunque muchos de los genes transferidos no lleguen a resultar útiles para la planta parásita, algunos de ellos si son funcionales y contribuyen a una buena salud de la planta.
También se investiga si la transferencia es de una sola vía, o en cambio, la planta huésped también puede obtener material genético.
"Las plantas parasitarias viven muy íntimamente en relación con su huésped, extrayendo nutrientes, pero también obtienen material genético en el proceso, y a veces incorporan ese material en su genoma. Estudios previos se centraron en genes únicos transferidos. Aquí, usamos conjuntos de datos a escala genómica sobre la expresión de genes para determinar si la gran cantidad de material genético que proviene de la transferencia horizontal de genes se está utilizando"
Fuentes: ChileBio, The Conversation, Agro-Bio
domingo, 22 de mayo de 2022
LAS PLANTAS CARNÍVORAS Y LOS CAMPOS MAGNÉTICOS
A estas alturas, la ciencia ya nos ha permitido conocer cómo actúan las Venus Atrapamoscas y qué trucos utilizan para alimentarse. Pero, ahora, con la nueva información tenemos acceso a una perspectiva del proceso que antes ni nos imaginábamos. Gracias a esto, sabemos que, luego de que la planta haya atraído a la presa hasta sus fauces, al momento de atraparla a su alrededor se genera un pequeño campo magnético como respuesta al movimiento de la Venus.
Para poder detectar esto, Fabricant, la líder del estudio, y sus colegas trabajaron con sensores de vidrio denominados “magnetómetros atómicos”. Estos son unos de los más novedosos equipos existentes para la medición de campos magnéticos. En la actualidad, fue exactamente gracias a su precisión y adaptabilidad que estos dispositivos colaboraron con la detección de las leves señales magnéticas en las plantas carnívoras.
¿Y para qué sirve esto? Para poner en perspectiva la potencia de los campos magnéticos de las plantas carnívoras, podemos compararlo con aquel que rodea a la Tierra. Este es más de un millón de veces más fuerte que el que rodea a las Venus Atrapamoscas. Con esto en mente, podemos entender que ambos, a pesar de ser campos magnéticos, definitivamente no cumplen las mismas funciones. De hecho, con una intensidad tan baja, las señales magnéticas de las plantas carnívoras no sirven como medios de defensa.
Por este motivo, Fabricant y sus colegas consideran que la generación de estos campos nos es un medio para un fin, sino la consecuencia de un proceso. En pocas palabras, como explicación, plantean que las señales solo se liberan cuando la planta se mueve para atacar a su presa y atraparla entre sus hojas. Para esto, pequeños impulsos eléctricos la instan a movilizarse. Y, justamente, de ellos proviene la energía necesaria para la generación de un leve campo magnético.
Hasta la fecha, al menos otras dos especies de plantas también han mostrado señales de poseer biomagnetismo –la generación de corrientes eléctricas y campos magnéticos en organismos vivos como animales, humanos y también plantas–. Pero esto no evita que el descubrimiento marque una situación altamente particular en el mundo de la flora.Ahora, la siguiente meta de los investigadores es medir otras plantas para poder detectar más campos magnéticos como los de las carnívoras. Incluso, esperan poder aprovechar los avances de la tecnología para detectar y medir hasta señales más débiles que las de este último descubrimiento, de hacerlo, se estaría abriendo camino a todo un nuevo campo de investigación biomagnética en el mundo de las plantas. Un área que, hasta ahora, se ha mantenido casi completamente inexplorada.
Detrás del estudio que ha revelado esta información estuvieron los investigadores alemanes Anne Fabricant, Geoffrey Z. Iwata, Sönke Scherzer, Lykourgos Bougas, Katharina Rolfs, Anna Jodko-Władzińska, Jens Voigt, Rainer Hedrich y Dmitry Budker. En enero, los resultados de su investigación se publicaron en la revista en línea Scientific Reports.
sábado, 21 de mayo de 2022
JARDINERÍA EXTRATARRESTE, CULTIVAN PLANTAS EN SUELO LUNAR
La NASA anunció hace unos años su programa Artemisa. Su misión es llegar a la Luna a mediados de esta década y montar una base permanente ya para finales. Entre las muchas cosas que necesitarán los nuevos selenitas está la comida. Además de la que les llegue desde la Tierra, planean cultivar sus propias verduras allí.
Ya hay miles de propuestas para plantar vegetales en suelo lunar. Este nuevo interés fue la ocasión para un grupo de investigadores de la Universidad de Florida. Llevaban años queriendo sembrar en el regolito que la NASA tiene en sus laboratorios para estudiar la interacción entre material extraterrestre y la biología terrestre. Por fin, hace unos meses recibieron 12 gramos de tierra de la Luna. No les llegaba para un latifundio, pero se las apañaron para plantar varios ejemplares de Arabidopsis thaliana, una pequeña planta de florecillas blancas. La A. thaliana fue el primer vegetal del que se secuenció su genoma y, para los científicos, es a las plantas lo que los ratones de laboratorio son entre los animales.
Así, en la NASA han desarrollado una impresora 3D que funcionará con polvo lunar y en China están dando avances en producir oxígeno y combustible a partir del suelo lunar para un soporte vital extraterrestre. El objetivo en todos los casos es mejorar la autonomía de los astronautas in situ durante las misiones para que no dependan tanto de la Tierra.
La investigación, publicada en la revista Nature, empleó muestras recogidas por el Apolo 11, 12 y 17, junto con un grupo control de suelo volcánico terrestre con una composición similar. Para favorecer el crecimiento emplearon una solución nutritiva a base de agua como fertilizante. Como era de esperar, la planta creció aún peor en el suelo de la Luna que en entre la hostil ceniza volcánica, pero igualmente logró germinar y crecer.Casi todas las plantas germinaron entre 48 y 60 horas después de sembrar las semillas, emergiendo al poco unas pequeñas hojas de entre la tierra lunar. Es algo que no esperaban, reconocen los creadores de este pequeño jardín lunar. El problema, como dijo el Dr. Stephen Elardo, uno de los tres investigadores, a Futurism, es que en la Luna “todo está basado en rocas. Casi no hay carbono, ni agua, ni fósforo, ni nitrógeno… todo lo que necesita una planta”. Y tras esto vieron al sexto día que algo no iba bien. Tras podar las plantas para concentrar su estudio en un solo tallo (tampoco les sobraba la tierra), comprobaron que las podas tenían las raíces atrofiadas, más gordas, retorcidas y cortas que los ejemplares que habían plantado en tierras terrestres, las plantas de control.
De momento, se está analizando el suelo lunar para identificar mejor sus deficiencias y poder desarrollar abono extraterrestre, pero ya se ha demostrado que es una vía de investigación fértil y posible.
“Ya no necesitamos llevar toda la tierra con nosotros”, dice Elardo. “Podemos usar el suelo lunar que ya está allí, agregarle algunas enmiendas y, con suerte, estar en condiciones de cultivar”.
IDENTIFICAN LA CUTÍCULA COMO PRIMERA BARRERA DE PROTECCIÓN DE LAS PLANTAS FRENTE A LA RADIACIÓN ULTRAVIOLETA
Ahora, científicos del Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM), pertenecientes a la Universidad de Málaga (UMA) y al Consejo Superior de Investigaciones Científicas (CSIC), han dado un paso más en su estudio, identificando a la cutícula como primera barrera de protección de las plantas frente a la radiación ultravioleta (UV), en concreto, ante la UV-B (entre 280 y 310 nm) que, aunque representa solo un 2% de la luz solar incidente, es potencialmente nociva para las plantas, pudiendo dañar los tejidos e, incluso, alterar el material genético.
Se trata de un estudio interdisciplinar, que se ha publicado en la revista 'Nature Communications', en el que confluyen la Biología Vegetal, la Espectroscopia Molecular y la Química Cuántica.
"Hasta ahora se suponía que las hojas y frutos se protegían de la radiación UV mediante un amplio abanico de estructuras moleculares, denominados genéricamente compuestos fenólicos, presentes en diversos órganos y compartimentos celulares internos de las plantas", explica el catedrático de Bioquímica y Biología Molecular de la UMA Antonio Heredia, uno de los autores de este trabajo.
"Los ácidos cinámicos presentes en las cutículas tienen una estructura molecular aromática conjugada con un doble enlace que absorbe especialmente radiación de la zona espectral UV-B. La molécula absorbe la energía y gira de forma instantánea", señala la científica del CSIC Eva Domínguez, quien aclara que, finalmente, la radiación absorbida se transforma en calor, es decir, la energía luminosa se disipa en forma de energía térmica volviendo la molécula a su estructura original para reiniciar el proceso.
La experta afirma que este mecanismo nunca se había comprobado en un sistema biológico y que abre la puerta a nuevos trabajos relacionados con otras posibles propiedades de la cutícula como la conductividad eléctrica inducida por la luz.
HALLADO EL PRIMER RETRATO COMPLETO SOBRE EL MICROBIOMA ORAL
Según los autores del estudio, los adolescentes tienen un microbioma oral muy biodiverso y que varía mucho entre personas, lo que quizás esté relacionado con cambios hormonales y de hábitos durante esta fase. Las personas de mediana edad tienen una biodiversidad más baja y además una composición más homogénea entre personas, representando una etapa de alta estabilidad. A partir de los 60 años, la biodiversidad y las diferencias entre personas aumentan de nuevo y de manera muy considerable.
Los autores del estudio se percataron de que la alta diversidad del microbioma oral en personas de edad avanzada era la causa del establecimiento de especies oportunistas raras, casi todas vinculadas a enfermedades orales como la periodontitis. Los autores postulan que la diferencia entre la edad media y avanzada puede deberse a diferencias en el sistema inmune, que al debilitarse con la edad hace que la cavidad bucal sea más susceptible a la colonización de especies oportunistas que serían normalmente rechazadas.
Con el objetivo de entender las características ambientales y/o de estilo de vida que influyen en el microbioma oral, los participantes del estudio rellenaron un cuestionario que examina 80 aspectos diferentes sobre el estilo de vida, la dieta, la higiene y la salud.
Los factores asociados a cambios importantes en el microbioma oral están vinculados a enfermedades crónicas como la fibrosis quística o en síndromes como el síndrome de Down, seguidos por los de estilo de vida como fumar. Cada uno de estos factores cambió el microbioma de una manera particular, resultando en una señal específica. También influyeron, aunque en menor medida, la celiaquía, la hipertensión o el uso de antibióticos.
El impacto de las relaciones sociales y familiares también influye sobre la composición del microbioma oral. Miembros de la misma familia – por ejemplo, padres e hijos, o dos hermanos o hermanas – tienen un microbioma más parecido que entre dos personas de diferentes familias. La asociación existe incluso entre los miembros de la misma clase escolar, un hallazgo que hace que los autores postulen que compartir el mismo entorno, aunque sea unas horas al día, puede afectar significativamente al microbioma oral.
‘Saca la Lengua’ es un proyecto de ciencia ciudadana impulsado por el Centro de Regulación Genómica y la Fundación ”la Caixa” que tenía como objetivo descubrir la variedad de microorganismos que viven en nuestra boca. La primera edición del proyecto fue lanzada en 2015 con el objetivo de determinar la relación del microbioma oral con las características ambientales y/o de estilo de vida entre adolescentes.
Tras el éxito del primer proyecto, en 2017 se lanzó la segunda edición de ‘Saca la Lengua’ con el objetivo de ampliar el primer retrato del microbioma oral con datos de otros grupos de edad o de pacientes de ciertas enfermedades como la celiaquía, la fibrosis quística, o en síndromes como el síndrome de Down.
El equipo científico de ‘Saca la Lengua’ visitó más de 30 centros educativos y centros cívicos en varias ciudades del territorio español. El equipo habilitó una furgoneta con los equipos necesarios para el procesamiento inicial de las muestras de saliva, recorriendo más de 7.000 kilómetros entre Barcelona, las Islas Baleares, la Comunidad Valenciana, Murcia, Andalucía, Madrid, Galicia, País Vasco y Aragón.
«Este se planteó desde un principio como un proyecto participativo, en el que la ciudadanía podía contribuir no solo con una muestra de saliva, sino también con las preguntas que debíamos explorar y la priorización de los datos a analizar» afirma la Dra. Elisabetta Broglio, Coordinadora de Ciencia Ciudadana en el CRG. «Entre asociaciones de pacientes, bares, museos, escuelas, centros cívicos y aulas de la tercera edad, todos se volcaron para formar parte del estudio. Sin esta participación masiva hubiera sido imposible conseguir unos resultados con este nivel de resolución.»
viernes, 20 de mayo de 2022
RESUCITA UNA ESPECIE DE CORAL PERDIDA DURANTE MEDIO SIGLO
Con aproximadamente un tercio de los corales del mundo actualmente en peligro de extinción debido al cambio climático, científicos encontraron que el coral Plesiastrea versipora, que está muy extendido en el Océano Indo-Pacífico, en realidad escondía una segunda especie críptica.
La especie P. peroni se describió hace unos 200 años, sin embargo, con el paso del tiempo, los taxónomos la agruparon con P. versipora, pero ahora hemos resucitado la especie anterior, que había estado oculta durante más de medio siglo".
Recorrieron 200 años de literatura histórica y moderna para comprender primero las características morfológicas más grandes de P. versipora, que se describió por primera vez como una sola especie en 1816. Al bucear en varios sitios alrededor de Australia y el Indo-Pacífico, recolectaron muestras, que usaron para estudiar la micromorfología y la microestructura del esqueleto de coral para identificar aún más sus características intrincadas únicas.
Después de llevar a cabo la secuenciación genética, encontraron que esta especie de coral en realidad contenía una segunda especie críptica, a la que llamamon P. peroni, y se encuentra al norte del Trópico de Capricornio en Australia y en todo el Indo-Pacífico.
Juszkiewicz dijo que el descubrimiento de una nueva especie ayudó a la conservación de la biodiversidad y ayudó a prevenir la pérdida de diversidad de especies. Con el impacto cada vez mayor del cambio climático en el medio ambiente marino, nunca ha sido más importante comprender las especies de coral y dónde se encuentran".
"No podemos proteger a las especies si no conocemos su existencia o su rango geográfico actual, por lo que este estudio es un paso para lograrlo. Con muchas especies de vida marina y terrestre amenazadas por el cambio climático provocado por el hombre, este estudio refuerza nuestra comprensión del árbol de la vida y destaca la importancia de los proyectos de taxonomía que nos ayudan a comprender los organismos que existen en nuestro planeta, cómo se todos están relacionados y cómo protegerlos mejor".
NUEVO MÉTODO QUE DESCRIBE LA EVOLUCIÓN DE LA BACTERIA DE LA TUBERCULOSIS
El complejo de Mycobacterium tuberculosis (MTBC) comprende un grupo de bacterias patógenas que provocan la enfermedad de la tuberculosis en humanos y otros mamíferos. Tiene alrededor de 4.000 genes, de los cuales se conoce la función de menos de la mitad. De las formas que afectan a los humanos hay nueve ‘familias’ principales que divergieron de un ancestro común y se diversificaron en diferentes regiones del mundo. Se calcula que una cuarta parte de la población mundial está infectada por el bacilo de la tuberculosis sin desarrollar la enfermedad, lo que se conoce como tuberculosis latente.
El grupo de investigación del IBV-CSIC liderado por Iñaki Comas y Álvaro Chiner ha desarrollado una metodología nueva que permite estudiar la evolución de la mayor parte de estos 4.000 genes en respuesta a distintas presiones de selección externas desde que el bacilo de la tuberculosis comenzó a infectar humanos y otros mamíferos. “Hemos visto que al menos la mitad de los genes del MTBC ha estado, en algún punto de su trayectoria evolutiva, bajo selección positiva. Esto significa que han acumulado mutaciones y cambios como mecanismo de adaptación”, explica Álvaro Chiner Oms, el autor principal de este trabajo.
En los estudios anteriores apenas se había documentado este fenómeno en un 10% del genoma. “Entre estos genes tenemos, por ejemplo, genes de los llamados ‘sistemas de dos componentes’, que regulan la interacción entre el patógeno y su hospedador”, recuerda Chiner. “También encontramos epítopos, regiones reconocidas por el sistema inmunitario del hospedador humano, bajo selección positiva en el pasado, pero muy conservados en las cepas actuales”, resume el investigador. Para llevar a cabo este estudio se analizaron 9.000 cepas del complejo MTBC obtenidas en distintas partes del mundo.
Identificar genes causantes de la resistencia a antibióticos.
La principal ventaja de esta metodología es que permite discriminar variaciones históricas sufridas por un patógeno e identificar los genes involucrados con gran precisión, lo que permitiría comprobar si algunos genes evolucionan en respuesta a condiciones concretas. Por ejemplo, la introducción de los antibióticos a partir de la segunda mitad del siglo XX provocó un cambio en la trayectoria evolutiva de los genes implicados en la resistencia a este tratamiento, cambio que ahora se puede medir. “Hasta ahora, las aproximaciones que utilizábamos no nos permitían discriminar el efecto de estas presiones de selección históricas”, asegura Chiner.
En 2020, 1,5 millones de personas murieron de tuberculosis, y casi 10 millones la contrajeron. Esta enfermedad, causada por la transmisión de la bacteria Mycobacterium tuberculosis (MTBC), es curable y prevenible, y su erradicación es uno de los Objetivos de Desarrollo Sostenible establecidos por Naciones Unidas para 2030. El IBV-CSIC desarrolla varios proyectos para estudiar la bacteria causante de esta enfermedad, entre ellos el proyecto europeo TB-Reconnect, una Consolidator Grant del European Research Council liderada por Iñaki Comas. Además, la tuberculosis es uno de los focos de la PTI Salud Global del CSIC junto con otros retos infecciosos de impacto global como la covid-19 o la resistencia a antibióticos.
Fuentes: CSIC
REVELAN LA ESTRUCTURA Y EL MECANISMO DE LA PROTEÍNA ALFA-2MACROGLOBULINA
Los resultados, publicados en la revista Proceedings of the National Academy of Sciences (PNAS), son el resultado de nueve años de trabajo con técnicas avanzadas de criomicroscopía electrónica por parte de los equipos liderados por F. Xavier Gomis-Rüth, del IBMB-CSIC, y José R. Castón, del CNB-CSIC, en colaboración con la Unidad de Microscopía Electrónica del Instituto de Salud Carlos III (ISCIII) y la Universidad de Leeds (Inglaterra).
La hA2M es una proteína muy abundante en el plasma sanguíneo humano que actúa como inhibidor de endopeptidasas (moléculas que degradan proteínas en procesos como la digestión o la señalización celular) y tiene otras funciones relevantes, como la respuesta inmune innata, la homeostasis (el equilibrio interno del organismo) y la defensa frente a patógenos. Su mal funcionamiento está relacionado con enfermedades como el Alzheimer, diabetes, progresión y crecimiento de tumores y enfermedades inflamatorias o cardiovasculares. Sin embargo, a pesar de un meticuloso análisis bioquímico durante más de 75 años, su estructura molecular no se había caracterizado hasta ahora.
Normalmente, los inhibidores de endopeptidasas funcionan con mecanismos del tipo 'llave-y-cerradura’, receptores moleculares que reconocen y se ensamblan de forma muy específica, lo que hace que “un inhibidor solo actúe frente a una o unas pocas endopeptidasas muy concretas”. Tal y como explica Gomis-Rüth, del IBMB-CSIC, la peculiaridad de la hA2M es que “puede inhibir muchas clases de endopeptidasas de manera inespecífica”.
Castón, investigador del CNB-CSIC, destaca la peculiaridad de hA2M que “toma las proteínas que debe inactivar mediante un mecanismo de ‘trampa’, comparable al de las plantas carnívoras: cuando un insecto toca un ‘gatillo’ en el fondo de la planta abierta, se dispara un mecanismo de cierre que atrapa la presa.” De modo similar, cuando una endopeptidasa entra en la hA2M, se dispara “una reordenación ultrarrápida de su estructura de tetrámero, que da lugar a un tetrámero cerrado: una especie de jaula de la cual la endopeptidasa, como si fuera una presa, no puede escapar”.
Daniel Luque, científico del ISCIII concluye: “en este proceso también se exponen en la superficie segmentos de la molécula que están escondidos en la forma abierta, de forma que el complejo formado por hA2M y su diana puede ser reconocido por las células que se encargarán de eliminarlo de la circulación sanguínea”.
“Es así como la hA2M actúa como un cazador dentro del torrente sanguíneo en busca de peptidasas que hayan terminado sus funciones biológicas y deban eliminarse”, explican los investigadores.
DESARROLLAN UN CHUPETE BIOELECTRÓNICO PARA MONITOREAR LA SALUD DE LOS BEBÉS EN LOS HOSPITALES
Con este dispositivo electrónico e inalámbrico se pueden controlar los electrolitos salivales de los neonatos, así como detectar sus niveles de sodio y potasio en tiempo real sin recurrir a procedimientos como de extracción de sangre.
Según se indica en la revista universitaria Biosensors and Bioelectronics, este chupete inteligente evitaría métodos invasivos para los recién nacidos y proporcionaría una atención hospitalaria extra a bebés prematuros o con otros problemas de salud.
En primer lugar, ha recordado que el objetivo principal de este proyecto de desarrollo de chupetes bioelectrónicos se centra en eliminar todos los cables que habitualmente rodean a los bebés recién nacidos y prematuros en las NICU.
"A menudo vemos imágenes donde los bebés están conectados a un montón de cables para controlar sus condiciones de salud, como la frecuencia cardíaca la respiratoria, la temperatura corporal y la presión arterial. Queremos deshacernos de esos cables", ha manifestado. Asimismo, el docente ha indicado que las extracciones de sangre no solo pueden ser potencialmente dolorosas para los recién nacidos, sino que en ellas se recopila información aleatoria, debido a que se realizan en tramos concretos (por la mañana y por la noche) y no de forma constante.
De este modo, el equipo médico que esté al cuidado del recién nacido podrá conocer en todo momento cuál es el estado de salud de los bebés hospitalizados, sin extracciones de sangre ni otros métodos invasivos.
Por el momento, el equipo de investigadores que ha desarrollado este dispositivo inteligente está trabajando en conseguir componentes más asequibles y que se puedan reciclar. Una vez los consiga, planea desarrollar un prototipo más grande del chupete bioelectrónico para probarlo en otros pacientes de mayor edad.
LA PRIMERA IMAGEN CAPTADA DEL AGUJERO NEGRO DEL CENTRO DE LA GALAXIA
Aunque no podemos ver el agujero negro en sí, ya que se trata de un objeto totalmente oscuro, el gas brillante que lo rodea muestra una firma reveladora: una región central oscura (llamada sombra) rodeada por una estructura brillante en forma de anillo. Esta nueva visión capta la luz doblada por la poderosa gravedad del agujero negro, que tiene una masa de cuatro millones de veces la del Sol.
“Nos sorprendió lo bien que coincidía el tamaño del anillo con las predicciones de la Teoría de la relatividad general de Einstein", señala el científico principal del proyecto EHT Geoffrey Bower, del Instituto de Astronomía y Astrofísica, Academia Sínica (Taipei). "Estas observaciones sin precedentes han mejorado enormemente nuestra comprensión de lo que sucede en el centro de nuestra galaxia y ofrecen nuevos conocimientos sobre cómo los agujeros negros gigantes interactúan con su entorno”.
El EHT observó Sgr A* varias noches recopilando datos durante numerosas horas seguidas, de forma similar al uso de un tiempo de exposición prolongado en una cámara fotográfica. Entre los radiotelescopios que forman el EHT, la antena IRAM de treinta metros situada en Sierra Nevada (Granada) ha jugado un papel esencial en las observaciones que han permitido obtener la primera imagen del agujero negro en SgrA*.
Los dos agujeros negros se ven notablemente similares, a pesar de que el agujero negro de nuestra galaxia es más de mil veces más pequeño y menos masivo que M87*. "Tenemos dos tipos completamente diferentes de galaxias y dos masas de agujeros negros muy diferentes, pero cerca del borde de estos agujeros negros se ven increíblemente similares –apunta Sera Markoff, copresidente del Consejo Científico del EHT y profesor de astrofísica teórica en la Universidad de Ámsterdam–. Esto nos dice que la Relatividad General gobierna estos objetos de cerca, y cualquier diferencia que veamos a mayor distancia se debe a diferencias en el material que rodea los agujeros negros".
Este resultado fue considerablemente más difícil que el de M87*, a pesar de que Sgr A* se halla mucho más cerca. El científico del EHT Chi-kwan Chan, del Observatorio Steward y del Departamento de Astronomía y del Instituto de Ciencia de Datos de la Universidad de Arizona (EE UU), explica: "El gas en las proximidades de los agujeros negros se mueve a la misma velocidad -casi tan rápido como la luz- alrededor de Sgr A* y de M87*. Pero, mientras que el gas tarda entre días y semanas en orbitar alrededor de M87*, más grande, en Sgr A*, mucho más pequeño, completa una órbita en cuestión de minutos. Esto significa que el brillo y el patrón del gas alrededor de Sgr A* cambiaban rápidamente mientras la Colaboración EHT lo observaba: era un poco como intentar tomar una foto clara de un cachorro que persigue rápidamente su cola".
Nuevas herramientas de observación
El equipo tuvo que desarrollar nuevas y sofisticadas herramientas que dieran cuenta del movimiento del gas alrededor de Sgr A*. Mientras que M87* era un objetivo más fácil y estable, en el que casi todas las imágenes se veían igual, ese no era el caso de Sgr A*. La imagen del agujero negro Sgr A* es un promedio de las diferentes imágenes que el equipo extrajo, revelando finalmente el gigante que reside en el centro de nuestra galaxia por primera vez.
El esfuerzo ha sido posible gracias al ingenio del equipo de más de 300 personas de 80 institutos de todo el mundo que forman la colaboración EHT. Además de desarrollar complejas herramientas para superar los retos que ha supuesto obtener la primera imagen de Sgr A*, el equipo trabajó rigurosamente durante cinco años, utilizando supercomputadoras para combinar y analizar sus datos, todo ello mientras compilaban una biblioteca sin precedentes de agujeros negros simulados para comparar con las observaciones.
“Estudios previos, galardonados con el Premio Nobel de Física en 2020, habían demostrado que en el centro de nuestra galaxia reside un objeto extremadamente compacto con una masa cuatro millones de veces mayor que nuestro Sol. Ahora, gracias al EHT, hemos podido obtener la primera confirmación visual de que este objeto es, casi con toda seguridad, un agujero negro con propiedades que concuerdan perfectamente con la Teoría de la Relatividad General de Einstein”, afirma José Luis Gómez, miembro del Consejo Científico del EHT y líder del grupo del EHT en el Instituto de Astrofísica de Andalucía (IAA-CSIC). Las investigaciones con el EHT forman parte fundamental del proyecto estratégico Severo Ochoa del IAA-CSIC.
EL TIPO DE DIETA PUEDE AUMENTAR UNOS GASES POTENCIALMENTE DAÑINOS EN EL INTESTINO
miércoles, 18 de mayo de 2022
PLANTAS CON SUPERPODERES
martes, 17 de mayo de 2022
FOTOSÍNTESIS EXTRATERRESTRE
Después del análisis del suelo de la Luna traído por la nave espacial china Chang'e 5, los autores descubrieron que dicha muestra tenía algunos compuestos (como sustancias ricas en hierro y titanio) que podrían funcionar como catalizadores para la fabricación de oxígeno y combustible a partir de la radiación solar y el CO₂ exhalado por los futuros astronautas.
El equipo, dirigido por los científicos Yingfang Yao y Zhigang Zou de la Universidad de Nanjing, propone una estrategia de fotosíntesis extraterrestre que podría ser utilizada para favorecer la exploración humana en la Luna e incluso más allá.
Esta estrategia solo usa la luz solar, no energía externa, para producir ciertos productos de interés (como agua, oxígeno y combustible) que, según los investigadores, podrían mantener la vida en una base lunar. El equipo está actualmente buscando una oportunidad para poder probar este sistema en el espacio, posiblemente con las futuras misiones lunares tripuladas de China.
Aunque la eficiencia catalítica del suelo lunar es más pequeña que la de los catalizadores disponibles en la Tierra, Yao anticipa que el equipo de investigadores está probando distintos enfoques para mejorar su diseño, como fundir el suelo lunar en un material nanoestructurado de alta entropía, que es un mejor catalizador.
Según comenta Yao, puede que en un futuro no muy lejano veamos desarrollarse rápidamente la industria de los vuelos espaciales con tripulación. Al igual que en la "Edad de la Vela" en el siglo XVII, cuando cientos de barcos se lanzaron al mar, ahora entraríamos en una "Edad del Espacio".
jueves, 12 de mayo de 2022
LA BABOSA FOTOSINTÉTICA
Llamada científicamente Elysia chlorotica, la babosa esmeralda es conocida como uno de los animales más extraños del mundo. Un molusco gasterópodo marino que habita en el litoral Atlántico de América del Norte donde suele acechar cercana a las desembocaduras de los ríos. Su peculiar apariencia con forma de hoja junto a su intenso color verdoso acompañado de manchas blancas o rojas ha generado la curiosidad de miles de estudiosos que han querido saber más cosas acerca de este organismo.
La fisiología de su cuerpo es tan estrecha como una hoja. Tiene un torso que se ensancha en los laterales cuando la babosa se encuentra en estado de reposo. Es un ser vivo muy difícil de ver tanto por sus rasgos de camuflaje como por unas dimensiones que no pasan de los 45 mm de tamaño. Además, la babosa esmeralda tiene la capacidad de plegarse sobre si misma cuando se encuentra en alguna situación de peligro.
Este alimento permite dotar a la babosa de una capacidad única de las plantas y todo un privilegio: fabricar su propia materia orgánica. Los cloroplastos son una toxina habitual para la mayor parte de los seres vivos, pero los rasgos evolutivos de la babosa esmeralda han permitido que esta misma sustancia pueda permitirles alimentarse del mismo sol. Un rasgo verdaderamente interesante que está siendo estudiado por los científicos con la finalidad de aprender más sobre este proceso.
sábado, 30 de abril de 2022
LA EXTRAÑA REPRODUCCIÓN ASEXUAL DE DOS CÓNDORES
La conclusión a la que llegaron es que estos habían sido producidos por partenogénesis, una forma de reproducción asexual. Lo llamativo es que las madres de estas aves, que se encontraban en cautividad, convivían con machos y anteriormente se habían reproducido sexualmente. Por todo esto es el primer caso de partenogénesis en cóndores y el primero de cualquier especie aviar donde la hembra tuvo acceso a un macho.
La paternogénesis consiste en la segmentación del óvulo sin fecundar, esta solo ocurre en las hembras por la condición de los óvulos de totipotencia. Hay una duplicación del material genético de la hembra y es la que va a contribuir a producir el polluelo. La partenogénesis obligada y la facultativa son las dos principales. La partenogénesis obligada se da cuando el desarrollo de un nuevo individuo ocurre exclusivamente sin la contribución masculina. Se asocia con la hibridación entre un macho y una hembra de distintas especies y que en el resultado “se producen alteraciones que hace que, a partir de ese único apareamiento, la hembra se convierta en partenogenética y dé lugar a un clon. Con esto se establece una especie en la que a partir de ese momento ya no hay machos”. En este caso es facultativa, ya que son hembras que normalmente se reproducen sexualmente, pero que, por motivos que estos científicos desconocen, en esta ocasión ha sido asexual.
La paternogénesis es un proceso de reproducción asexual, que podría plantearse como una opción para ayudar las cifras de las poblaciones que están en peligro de extinción, pero es muy complejo porque es un proceso que ocurre de manera natural. También se plantea que puede ser un mecanismo para empezar nuevas poblaciones cuando migran a otras áreas.
Pero “Tampoco es completamente beneficioso para una población que todos los individuos sean producidos por partenogénesis porque hay una disminución de la variabilidad genética”. Son muchos los casos en los que las hembras partenogenéticas solo producen machos, por lo que dificultaría aún más la expansión de la especie, ya que solos no se pueden reproducir.
VIRUS DE LA GRIPE EN LA LECHE DE VACA PASTEURIZADA
Un equipo de científicos de la Universidad de Wisconsin-Madison ha descubierto por primera vez la presencia de virus de gripe aviar altament...
-
Actualmente, los rinocerontes blancos ( Ceratotherium simum ) están en una situación extremadamente delicada, solo quedan 2 en Ol Pejeta Con...
-
En el mar, cada año entran entre 5 y 13 millones de toneladas de plástico y miles de especies marinas tragan fibras de este material mientra...
-
En el ámbito humano la curiosidad es parte de la vida de las personas, es difícil encontrar a alguien que no sea curioso, pero no todas las ...