miércoles, 10 de mayo de 2023

UN FÓSIL QUE NOS MUESTRA A LOS ANTECESORES DE NUESTRAS PLANTAS

Un estudio realizado por la Universidad de Stanford (EE.UU) que ha sido publicado en la revista científica Current Biology, ha desvelado un fósil vegetal de hace unos 400 millones de años. 

Este fósil pertenece al periodo del Devónico temprano, donde todo era verde y no había ninguna flor y en el que se dio una gran diversificación de los pequeños musgos a los grandes y complejos bosques.

La revista citada anteriormente nos indica que el fósil encontrado puede pertenecer a las briofitas herbáceas. Según el equipo de investigadores, esta nueva especie es uno de "los ejemplos más complejos de una etapa aparentemente intermedia de la biología reproductiva de las plantas", la que produjo diferentes tipos de esporas con respecto al tamaño y, en general, con respecto a la especialización de las plantas terrestres del mundo.

Según los resultados de la investigación con este fósil, de un mismo esporangio (procedente de una planta parecida al helecho actual) se desarrollaban dos tipos de esporas de diferentes tamaños. El tamaño de estas esporas microscópicas oscilaba entre las 70 y 200 micras de diámetro (un cabello humano normalmente mide entre 60 y 80 micras de diámetro).

Unos expertos ya investigaron sobre el fósil de una planta llamada Chaleuria del mismo lugar y de la misma edad, pero de otro linaje. Esta tenía una actividad reproductiva parecida al fósil encontrado pero entonces todavía se desconocían el tamaño y la distribución  de las esporas.

Para finalizar, como decía Andrew Leslie (profesor de Ciencias Geológicas en Stanford y principal autor de la investigación): "Este tipo de fósiles nos ayuda a localizar cuándo y cómo exactamente las plantas lograron este tipo de división en sus recursos reproductivos." Para él, el final de esa historia evolutiva de especialización es algo parecido a una flor.
Leslie también nos cuestiona algo interesante y es que si este camino de la heterosporia es tan crucial, ¿por qué las plantas actuales no lo utilizan? Andrew nos responde que es una cuestión clásica en la evolución. Porque a lo mejor dividir sus recursos y producir dos diferentes tipos de esporas tenía su parte positiva en ese momento, pero, con el paso de los millones de años, estas ventajas se fueron perdiendo.

Fuentes: El PaísLa Vanguardia.


CAMBIO CLIMÁTICO AFECTA A LA REPRODUCCIÓN VEGETAL

El cambio climático puede afectar en gran medida a aquellas plantas de flores grandes por el simple hecho de necesitar más de dos litros de agua cuando se encuentran en plena época de floración, todo esto comprobado por investigadores españoles, pertenecientes ambos al Museo Nacional de Ciencias Naturales.

Esto llega a ser un tema de gran importancia ya que estás plantas se reproducen a través de agentes polinizadores, por lo que necesitan mantenerse con esos colores vivos y así de grandes para llamar la atención de esos insectos, y así llegar a reproducirse. El ascenso de las temperaturas y la gran bajada que se ha producido en estos últimos años de precipitaciones afectan en gran medidas a aquellas plantas que se encuentran en zona del Mediterráneo.

Los datos que han sido obtenido en esta investigación por estos españoles han sido que solo las hojas necesitan 1,5 litros agua, al igual que tres cuartas partes del carbono obtenido son utilizados para que esas hojas tan grandes, y se puede llegar a cuadriplicar esta cantidad de carbono si las plantas se encuentran en zonas o climas fríos. Investigadores hablan sobre aquellas plantas de hojas grandes que se encuentran dentro de nuestra estancia, ya que estas no necesitan los mismos recursos que las que se encuentran en entornos naturales, estas se adaptan al recipiente al que se encuentran.

En definitiva, lo que estos investigadores quieren llegar a transmitir a parte de controlar la contaminación es que si estas plantas que necesitan recursos para mantenerse, pueden llegar a ocurrir límites selectivos al tamaño floral, lo que significa que las plantas con flores chicas o aquellas que no necesiten tantos recursos tendrían más ventajas. Esto no solo puede llegar a la extinción de esas plantas con flores grandes, sino también de esos insectos que se alimentan de esas hojas.

Fuentes:20 minutosla opinión de Murcia


sábado, 6 de mayo de 2023

HALLAN UN NUEVO PROCESO DE REPRODUCCIÓN SEXUAL EN MICROALGAS

Un grupo de investigación descubre un nuevo proceso de reproducción en microalgas que facilita comprender la evolución de las algas y las plantas. Además, este nuevo descubrimiento podría originar nuevas aplicaciones industriales. 

Los investigadores llevaron a cabo el estudio sobre una especie unicelular de microalgas rojas llamadas Galdieria. Este tipo de microalgas presentan una gran capacidad de fijar el dióxido de carbono, incluso, dicha capacidad es mayor que el de las plantas. Además, las microalgas tienen mayor concentración de proteínas, vitaminas y pigmentos. 

La Galdieria es muy versátil, ya que es capaz de fabricar su propia energía y de obtener sus nutrientes. También, esta tolera bastante la sal y metales pesados. En cambio, su genoma es muy pequeño.

Dada su versatilidad, los científicos la consideran como un gran sistema para aplicaciones biotecnológicas. Sin embargo, la Galdieiria está rodeada por una gruesa y rígida pared celular, por lo que para extraer su contenido celular necesita bastante energía. También, la pared celular dificulta su modificación genética. 

En el proceso de su investigación, los científicos descubrieron que la manera de Galdieira con pared celular es diploide, es decir, presenta dos juegos enteros de cromosomas. En cambio, estos diploides al especificarse se origina un haploide sin pared celular y con un par de cromosomas. Para continuar con el descubrimiento, el equipo de investigación alargó el haploide que carece de pared celular hasta convertirlo en diploide de nuevo. De esta manera, fue como hallaron un proceso de reproducción sexual en microalgas al comienzo de la evolución de las algas y plantas. 

Con este estudio, los científicos han logrado desarrollar una técnica de modificación genética utilizando el haploide sin células. Dicho método permite producir líneas autoclonadas sin secuencia de ADN heterólogo para el uso industrial. Por ejemplo, han podido originar algas azules que no existen de forma natural para ser usadas como colorante alimenticio.

Los descubrimientos han sido fundamentales porque nunca se ha encontrado la reproducción sexual en muchas algas unicelulares surgidas a principios de la evolución. Se ha supuesto que dichas algas unicelulares proliferan por división celular o reproducción asexual. Y es por ello, el origen y evolución de la reproducción sexual en algas y plantas no han sido claros.

Para un futuro, dichos investigadores esperan aclarar esa duda sobre el origen y evolución de la reproducción sexual de algas y plantas. Además, creen que puede desenlazar interesantes usos científicos para la microalga Galdeiria. 

Asimismo, dicho haploide hallado en el estudio presenta el mismo potencial de crecimiento que el diploide, además, se puede extraer su contenido de manera fácil para ser modificado de forma genética. Esto último, facilitaría el uso de avances de utilización de las microalgas, así como obtener vacunas utilizando algas que expresen proteínas virales como antígenos. 

Fuentes : EuropaPress , Crónica

DESCUBREN "ABEJAS" EN EL FONDO MARINO

Sin abejas, como especie estaríamos condenados: son los principales polinizadores de millones de plantas y cultivos, haciendo el papel de agricultores y jardineros que mantienen estables las cadenas alimenticias de la superficie de nuestro planeta.

Pero, ¿Qué poliniza las plantas del fondo del mar? Según lo revelado en un nuevo estudio, y publicado en Nature Communications, el fondo del mar tiene sus propias "abejas", pequeños crustáceos y poliquetos (gusanos segmentados), de pocos milímetros de longitud, que contribuyen a la polinización de las plantas marinas.

El descubrimiento se realizó en los fondos del cálido Mar Caribe, donde crece la Thalassia testudinum. A este vegetal se lo conoce como hierba de tortuga, que se caracteriza por ocupar grandes extensiones del lecho en sitios pocos profundos y de gran iluminación. En su interior se refugian pequeños peces invertebrados, y sus hojas son uno de los alimentos favoritos del manatí y tortuga verde.

Los investigadores de la Facultad de Ciencias y del Instituto de Ciencias del Mar y Limnología (ICMyL) de la Universidad Nacional Autónoma de México (UNAM) descubrieron que esta planta tiene a pequeños invertebrados como aliados en su proceso de polinización. La Thalassia es un tipo de planta con flores masculinas y femeninas, y se creía que las corrientes marítimas era la única vía para que el polen de las primeras puedan fecundar las flores de la segunda.

Pero los científicos comprobaron que las flores masculinas abrían por la noche, posiblemente para evitar ser comida por peces herbívoros de hábitos diurnos. Y cuando esto sucedía, los crustáceos y poliquetos, que usan a las hojas de esta planta como refugio durante el día las visitaban para alimentarse. 

En su recorrido, estos diminutos invertebrados luego llegaban a las flores femeninas, donde depositaban las partículas de polen en los estigmas. Además de usar el aparato digestivo como medio de trasporte, los investigadores comprobaron que los minúsculos granos también se adhieren al cuerpo de los animales por medio de una sustancia pegajosa.

Este fenómeno de polinización fue bautizado como "zoobentofilia", que significa el traslado de polen por animales en el "bentos" (palabra griega que se traduce como fondos marinos).
Según los científicos mexicanos, este descubrimiento arroja luz en varios aspectos. Uno de ellos aclara muchos puntos de la evolución de los pastos marinos, que son de origen terrestre, en su conquista de los lechos marinos; por lo que se deduce que los crustáceos y pequeños gusanos tomaron el relevo de las abejas y mariposas.

También sirve para comprobar cómo logra reproducirse la Thalassia en lugares con escasa corriente marina, y abre la puerta a la recuperación de los fondos marinos en sitios donde esta planta ha desaparecido por desastres naturales o por la acción del hombre, como el cambio climático o la pesca de arrastre.

Fuentes: ABCTheobjective

martes, 2 de mayo de 2023

¿HAY PLANTAS QUE SE AUTOMASAJEAN PARA POLINIZARSE?

Un equipo científico internacional liderado por la Universidad de Granada ha descrito un novedoso mecanismo al que han llamado masaje de antera que fomenta activamente la autopolinización en algunas especies de plantas. 

Su investigación, que apareció en la
estimada publicación The American Naturalist, involucró la identificación de un fenómeno raro y único previamente desconocido en el estudio de las plantas.

Es un mecanismo en el que el aparato femenino de la misma especie (estigma), protagonizado por las anteras de las flores (la parte terminal del estambre, donde se produce el polen), sufre un movimiento coordinado y repetido durante horas. 

Según Mohamed Abdelaziz Mohamed, autor principal del estudio y profesor del Departamento de Genética de la UGR, "la mayoría de las plantas han desarrollado mecanismos para evitar los efectos perjudiciales de la consanguinidad. Sin embargo, algunas plantas han evolucionado para reproducirse exclusivamente por autogamia, es decir , sin mestizaje. 

 Dado que estos últimos descienden siempre de los primeros, los mecanismos que favorecen la autogamia deberían ser de carácter común. Es interesante que estos mecanismos que promueven la autogamia no se han encontrado con frecuencia, y los pocos que se han descrito son principalmente mecanismos pasivos.

Por lo general, los movimientos de las plantas son poco notorios y muchas veces pasan desapercibidos. Francisco Perfectti y Mohammed Bakkali, también autores del estudio y profesores del Departamento de Genética de la UGR, describen algunos casos en los que se manifiestan movimientos coordinados y repetidos. 

También se demuestra en el estudio, que también incluye como autores a José Mara Gómez del CSIC y a la alumna de la UGR Enrica Olivieri, que basta con masajear las anteras para que los granos de polen se asienten en el estigma de la flor y provoquen así la polinización. , alcanzando por sí misma valores de éxito reproductivo comparables a los alcanzados por polinización artificial o fecundación cruzada.

El hallazgo actual abre una nueva vía para comprender la reproducción de las plantas y, por extensión, la evolución de las plantas. 

Fuentes: IDEAL, THEOBJETIVE, 20MINUTOS

lunes, 1 de mayo de 2023

¿SABÍAS QUE LAS PLANTAS SE REPRODUCEN ENVIANDO "CARTAS DE AMOR" MOLECULARES?

Investigadores del Departamento de Biología Vegetal y Microbiana de la Universidad de Berkeley, han descubierto los complejos procesos moleculares que ocurren antes de la reproducción de las plantas con flores.

Los hallazgos, publicados el 6 de julio en Nature, revelan un proceso, previamente desconocido, que sirve como método de comunicación durante la fertilización.

Según el profesor Shen Luan, director de la división PMB y primer autor del artículo, el mecanismo exacto detrás de la señalización hasta ahora había sido imposible de descifrar para los investigadores.

“A nivel molecular, este mecanismo ahora está más claro que nunca” aclaró Luan.

El proceso por el que las flores se reproducen sexualmente se denomina polinización, y este consiste en la transferencia de polen desde el estambre de una flor al estigma del pistilo. Una vez que el grano de polen se encuentra en el estigma, un tubo polínico se desarrolla a partir de ese gránulo para eventualmente convertirse en un óvulo, facilitando la transferencia de esperma a este óvulo.

Luan admitió que los investigadores notaron la presencia de ondas de calcio que, al estilo de “cartas de amor” preceden al proceso de fertilización, y afirmaron que estaban al tanto de la importancia de estas señales de calcio, pero no estaban seguros de como se producían.

Con el fin de analizar cómo la célula femenina produce estas ondas, los coautores introdujeron un biosensor para monitorear los niveles de calcio en la célula específica para buscar señales de las partes masculinas que ocasionan ondas de calcio .

Descubrieron que los túbulos polínicos liberan una serie de pequeños péptidos que pueden ser reconocidos por los receptores de péptidos en la superficie de la célula del ovario femenino.

“Se podría comparar con un servicio de entrega” afirmó Luan. “Somos conscientes de que el pequeño péptido sirve como una señal para la parte femenina de la flor, actuando como un golpe en la puerta para alertar al receptor de que el tubo polínico ha llegado”.

Las ondas de calcio finalmente hacen que el tubo polínico estalle y libere el esperma inmóvil dentro del óvulo, asegurando así una fertilización exitosa.

“En cierto modo, se suicidan para liberar su esperma” aclaró Luan en Nature. “De vez en cuando, las células reproductoras femeninas también mueren, dejando al descubierto el óvulo y dando luz a una nueva vida. Se podría considerar un “viaje romántico” para su reproducción”.

Este descubrimiento del estudio de los canales de calcio en las plantas sugiere que estas tienen un método único para producir señales diferentes a las que se encuentran en los animales. 

De hecho, los investigadores han estado estudiando los canales de calcio durante más de 30 años y aprendiendo con ello cómo confieren resistencia al mildiu polvoriento (enfermedad fúngica por la que numerosas plantas se ven afectadas) o permiten la identificación mecánica del sistema radicular.

Además, comprender los complejos sucesos moleculares que intervienen en la fertilización podría ayudar a mejorar el rendimiento comercial de las plantas con flores o a utilizar los resultados para romper la barrera existente entre especies, lo que podría abrir la puerta a nuevas especies híbridas a través de la polinización cruzada.

Pero, aparte de su posible aplicación comercial, estos hallazgos resaltan sobre todo la capacidad que tienen las plantas de comunicarse vía molecular. “Desde un punto de vista evolutivo, ellas crearon sus propias moléculas específicas para obtener un proceso de comunicación único” concluyó Shen Luan.

sábado, 29 de abril de 2023

¿LA FOTOSÍNTESIS, LA NUEVA ENERGÍA SOSTENIBLE?

 

 

 

Los investigadores Yaniv Shlosberg, Gadi Schuster y Noam Adir han recurrido a la fotosíntesis para generar electricidad. Todo esto posible gracias a la financiación de una beca «Nevet» del Programa de Energía del Gran Technion (GTEP) y una beca VPR Berman del Technion para la Investigación Energética, así como el apoyo del Laboratorio de Investigación de Tecnologías del Hidrógeno (HTRL) del Technion. 

Aunque las plantas pueden servir como fuente de alimento, oxígeno, no se consideran una fuente de electricidad muy efectiva. Pero recogiendo los electrones transportados de forma natural por las células vegetales, los científicos pueden generar electricidad como parte de una célula solar biológica "verde". Una nueva investigación utiliza por primera vez una planta para crear una «célula biosolar» viva que funciona mediante fotosíntesis. 

En todas las células vivas, los electrones se mueven como parte de procesos bioquímicos naturales. Si hay electrodos, las células pueden generar electricidad que puede utilizarse externamente. Previos investigadores habían creado pilas de combustible de este tipo con bacterias, pero los microbios tenían que ser alimentados constantemente. En cambio, estos científicos, han recurrido a la fotosíntesis para generar corriente. En el proceso, la luz impulsa un flujo de electrones procedentes del agua que da lugar a la generación de oxígeno y azúcar. Es decir, las células fotosintéticas vivas producen un constante flujo de electrones que puede extraerse como "fotocorriente" y utilizarse para alimentar un circuito externo, igual que una célula solar.

Plantas, como las suculentas, que habitan los entornos áridos, es decir, plantas en las que algún órgano está especializado en el almacenamiento de agua, tienen gruesas cutículas que mantienen el agua y los nutrientes en el interior de sus hojas. Los expertos querían probar, por primera vez, si la fotosíntesis en las suculentas podría crear energía para células solares vivas, utilizando su agua y nutrientes internos como solución electrolítica de una célula electroquímica.

Crearon una “célula solar viva” utilizando la suculenta Corpuscularia lehmannii, también llamada «planta de hielo». Insertaron un ánodo de hierro y un cátodo de platino en una de las hojas de la planta y comprobaron que su voltaje era de 0,28 V. Cuando se conectaba a un circuito, producía hasta 20 µA/cm² de densidad de fotocorriente cuando se exponía a la luz y podía seguir produciendo corriente durante más de un día.

A pesar de que las cifras son inferiores a las de una pila alcalina tradicional, son representativas de una sola hoja. Estudios sobre dispositivos orgánicos similares sugieren que conectar varias hojas en serie podría aumentar el voltaje. El equipo diseñó específicamente la célula solar viva, de modo que los protones de la solución interna de la hoja pudieran combinarse para formar hidrógeno gaseoso en el cátodo, y este hidrógeno pudiera recogerse y utilizarse en otras aplicaciones.

Este método podría permitir el desarrollo de futuras tecnologías energéticas, verdes, sostenibles y multifuncionales.

Fuentes:Smartlighting, Química.es

viernes, 28 de abril de 2023

UN IMITADOR DE LA FOTOSÍNTESIS PODRÍA MEJORAR LAS CÉLULAS SOLARES.

Un reciente informe publicado en la revista Science Avances ha descubierto que la desaparición de bosques y la modificación del uso de suelo en la Amazonía tienen un efecto de "bomba de carbono" que produce grandes emisiones de dióxido de carbono (CO₂) a la atmósfera. El estudio muestra que los suelos de la Amazonía almacenan grandes cantidades de carbono, pero cuando la selva tropical es talada y los árboles son quemados, ese carbono es liberado. Además, la tierra se vuelve menos fértil, lo que disminuye la capacidad de los suelos para almacenar carbono en el futuro.

Los investigadores sugieren que esto podría tener graves consecuencias para la lucha contra el cambio climático y el objetivo de limitar el aumento de la temperatura global a 1,5 grados Celsius.
 El estudio examinó los datos satelitales de la deforestación y el cambio de uso de suelo en la Amazonía brasileña desde 2003 hasta 2015, y utilizó modelos informáticos para calcular la cantidad de carbono almacenado en los suelos de la región. 

 Los resultados muestran que la deforestación y el cambio de uso de suelo han causado la emisión de aproximadamente 8,6 giga toneladas de dióxido de carbono, lo que equivale a casi dos años de emisiones totales de gases de efecto invernadero de Brasil. Además, el estudio sugiere que la pérdida de carbono del suelo debido a la deforestación y el cambio de uso de suelo puede ser un factor aún más importante para el cambio climático que las emisiones de CO₂ causadas directamente por la quema de combustibles fósiles. Los autores del estudio enfatizan la necesidad de proteger y restaurar la selva amazónica para mitigar los efectos del cambio climático y mantener los valiosos servicios ecosistémicos que proporciona, como la regulación del clima y la conservación de la biodiversidad.

DESCUBREN UN NUEVO PROCESO FOTOSINTÉTICO QUE PODRÍA REVOLUCIONAR LA ENERGÍA RENOVABLE

Un equipo de científicos liderado por la Universidad de Sheffield en el Reino Unido ha dado un importante avance en la investigación sobre la fotosíntesis, una de las principales fuentes de energía renovable. El descubrimiento de un nuevo proceso fotosintético que utiliza la luz solar y el agua de manera más eficiente que el proceso convencional, podría tener un gran potencial como fuente de energía renovable.

La eficiencia de la fotosíntesis es actualmente limitada, ya que gran parte de la energía solar capturada por las plantas se pierde en forma de calor. Con el nuevo proceso descubierto, se podría mejorar la eficiencia energética de la fotosíntesis y aumentar la cantidad de energía solar que se puede transformar en biomasa. Además, podría tener aplicaciones en la producción de biocombustibles y otros productos químicos a partir de biomasa.

El descubrimiento fue posible gracias al uso de la espectroscopia de resonancia magnética nuclear (RMN), una técnica que permite analizar la estructura de las moléculas en solución. Los investigadores lograron identificar el mecanismo por el cual ciertas proteínas que forman parte de la maquinaria fotosintética de las plantas, conocida como complejo de antena, interactúan entre sí para capturar la luz y transferirla a las moléculas de clorofila encargadas de la fotosíntesis.

La fotosíntesis es un proceso fundamental en la producción de energía renovable, ya que es capaz de transformar la energía solar en energía química almacenada en la materia orgánica. Sin embargo, la eficiencia de este proceso es limitada, lo que ha llevado a los científicos a buscar nuevas formas de mejorarla.

El nuevo proceso fotosintético descubierto es una forma más eficiente de capturar y utilizar la energía solar para la fotosíntesis. Al utilizar menos energía para la captura de la luz solar, las plantas pueden usar más energía para la producción de biomasa y otros productos químicos. Esto podría tener un impacto significativo en la producción de biocombustibles y otros productos derivados de la biomasa.

Además, el nuevo proceso fotosintético podría tener implicaciones importantes en la lucha contra el cambio climático. Al mejorar la eficiencia de la fotosíntesis, se podría aumentar la cantidad de biomasa producida y reducir la dependencia de los combustibles fósiles. También podría reducir las emisiones de gases de efecto invernadero al producir biocombustibles más sostenibles y reducir el impacto ambiental de la producción de energía.

A pesar de que el descubrimiento del nuevo proceso fotosintético es un importante paso adelante en la investigación sobre la fotosíntesis, todavía queda mucho trabajo por hacer antes de que se pueda aplicar esta tecnología a gran escala. Los científicos tendrán que superar muchos retos, como aumentar la eficiencia de la fotosíntesis y desarrollar sistemas de captura y almacenamiento de la energía solar.

A pesar de estos desafíos, el hallazgo de un nuevo proceso fotosintético es un importante avance en la investigación sobre la energía renovable. Al proporcionar una forma más eficiente de capturar y utilizar la energía solar, podría conducir a nuevas formas de generación de energía.

UN ESTUDIO DESCUBRE QUE LAS PLANTAS "GRITAN" CUANDO SE ESTRESAN

Un estudio llevado a cabo por investigadores de la Universidad de Tel Aviv en Israel a través de plantas de tomate y tabaco ha descubierto que, al igual que los humanos, las plantas “gritan” o emiten sonidos cuando están estresadas. Si no lo sabíamos hasta ahora es porque esta especie de chasquido se emite en frecuencias ultrasónicas fuera del rango del oído humano.

Según ha explicado la bióloga Lilach Hadany de la Universidad de Tel Aviv en Israel: "Incluso en un campo silencioso, en realidad hay sonidos que no escuchamos, y esos sonidos contienen información. Hay animales que pueden escuchar estos sonidos, por lo que existe la posibilidad de que se produzca una gran interacción acústica. Las plantas interactúan con los insectos y otros animales todo el tiempo, y muchos de estos organismos usan el sonido para comunicarse, por lo que sería muy poco óptimo que las plantas no usaran ningún sonido."

Cuentan los investigadores en su trabajo recientemente publicado en la revista Cell que aunque los humanos no pueden escuchar estos estallidos ultrasónicos sin asistencia tecnológica, varios mamíferos, insectos e incluso otras plantas pueden detectar estos ruidos en la naturaleza y responder a ellos.
De hecho, se piensa que en un futuro podríamos aprovechar los dispositivos de grabación y la inteligencia artificial (IA) para monitorear los cultivos en busca de estos signos de deshidratación o enfermedad. Según se explica en el estudio:

Investigaciones anteriores revelaron que las plantas estresadas por la sequía se someten a un proceso llamado cavitación, donde se forman burbujas de aire y colapsan dentro del tejido vascular de la planta, lo que produce un sonido de estallido que puede detectarse mediante dispositivos de grabación conectados a la planta (se abre en una pestaña nueva). Pero no estaba claro si tales chasquidos podían escucharse a distancia. 

El equipo del nuevo estudio instaló micrófonos cerca de plantas sanas y estresadas de tomate (Solanum lycopersicum) y tabaco (Nicotiana tabacum), tanto en una caja insonorizada como en un invernadero. Las plantas estresadas se deshidrataron o se les cortaron los tallos.

Así descubrieron que, en promedio, las plantas sanas emitieron menos de un estallido por hora, pero las plantas estresadas emitieron alrededor de 11 a 35, según el factor estresante y la especie de la planta. Las plantas de tomate estresadas por la sequía fueron las más ruidosas, y algunas plantas emitieron más de 40 estallidos por hora.

Además, introdujeron grabaciones en un algoritmo de aprendizaje automático, un sistema de inteligencia artificial que se usa para identificar patrones en los datos, y descubrieron que el algoritmo entrenado tenía una tasa de éxito de aproximadamente el 70% para distinguir los sonidos emitidos por diferentes plantas expuestas a diferentes factores estresantes. Luego, entrenaron otro sistema para diferenciar entre tomates sanos y estresados por la sequía en un invernadero con más del 80 % de precisión.

Fuentes: Levante , Canal 13 , Biobio chile 

MICROORGANISMO QUE AYUDA A LAS PLANTAS A PRODUCIR MÁS HIERRO

Un equipo de investigadores perteneciente a la Universidad de Córdoba descubrió los mecanismos que utiliza el hongo entomopatógeno Metargizium brunneum para aumentar las reservas de hierro en plantas de melón y pepino.

Tras identificar el potencial de este hongo como controlador de plagas de insectos, Fabián García, Enrique Quesada, María José García y Meelad Yousef, investigadores del Departamento de Agronomía del Centro de Excelencia María de Maeztu de la Universidad de Córdoba, describieron por primera vez los mecanismos empleados por la cepa Metarhizium brunneum EAMa 01/58-Su para aumentar el contenido de hierro de la planta.

La institución académica informó que los hongos entomopatógenos, microorganismos que causan enfermedades en insectos plaga, actúan como un efectivo biopesticida, lo que la Unidad de Entomología Agropecuaria logró convertir en un producto para el control sostenible de la mosca del olivo. 

Pero aparte de eso, también tienen la función de ayudar a las plantas a hacer frente a las carencias de nutrientes, como la deficiencia de hierro, y así aumentar su producción.

Tras haber comparado tres cepas de Beauveria bassiana y Metarhizium bruneum, encontraron que Metarhizium brunneum EAMa 01/58-Su era la que más aportaba hierro a la planta.

Luego investigaron la deficiencia de este elemento causada por el hongo y encontraron que “induce dos genes principales para la adquisición de hierro”, por lo que “presuntamente hace que las plantas sean más eficientes en la absorción de hierro del suelo”, explica la investigadora María José García.

Estos microorganismos proporcionan asistencia directa e indirecta a las plantas cuando adquieren hierro. A diferencia de la ruta indirecta, que ocurre cuando estos microorganismos están en el suelo y no afectan a la respuesta de la planta, sino que simplemente hacen que esta tenga más celulosa disponible, según el investigador Meelad Yousef: “La ruta directa implica cambios en los genes que los microorganismos inducen para qué la planta adquiera más celulosa”.

En este estudio realizado en plantas de melón y pepino, resultado de una sinergia entre los grupos de fisiología vegetal y entomología agrícola, se demostró que desde el primer día de aplicación de una solución con hongos entomopatógenos (cepa F012), la planta comienza a inducir respuestas a la carencia de hierro. Esto sería muy importante en España, donde abundan los suelos arcillosos, lo que dificulta la absorción de hierro por parte de las plantas.

Así pues, el bioinsecticida desarrollado a partir de esta cepa gana valor.
 
El uso de este producto contra las principales plagas de estos cultivos, como el pulgón o la mosca blanca, es muy eficaz y estable, porque la producción de estos microorganismos no daña el medio ambiente y además ayudan a regular las comunidades de microorganismos del suelo.

“El objetivo final trataría de crear un bioestimulante que permita proteger a los cultivos de ataques patogénicos y mejorar la nutrición férrica de las plantas en condiciones adversas” aclaró el investigador Miguel Ángel Aparicio.

La UCO confirmó que este experimento proviene de la Tesis Doctoral del Investigador Miguel Ángel Aparicio, la cual recibió ayuda del Plan Propio de investigación de la Universidad de Córdoba.

jueves, 27 de abril de 2023

MODIFICAN LA FOTOSÍNTESIS Y CONVIERTEN LA LUZ SOLAR EN ENERGÍA

Científicos de la universidad de Cambridge encuentran una nueva vía para transformar la luz solar en energía al modificar la técnica fotosíntesis en las plantas.
Expertos del colegio St.Jhon de Cambridge, logran con éxito dividir el agua en oxígeno e hidrógeno cuando cambiaron la fotosíntesis, proceso en el que las plantas convierten la luz solar en energía, esta es la fuente de todo el oxígeno que existe en el planeta.
El artículo de la publicación británica, destaca que el hidrógeno es producido cuando el agua se divide, esto podría ser una forma ilimitada de energía renovable.
Los científicos de Cambridge usaron la luz natural para transformar el agua en hidrógeno y oxígeno, para esto, utilizaron una combinación de componentes biológicos y tecnología artificial.
Katarzyna Soko, estudiante de doctorado del colegio St.John, señaló que "La fotosíntesis natural no es eficaz porque ha evolucionado únicamente para sobrevivir, por lo que produce la energía mínima necesaria, entre un 1 y 2 % de lo que podría convertirse y almacenarse."
El estudio añade que la fotosíntesis artificial ha llegado a utilizarse, pero no ha triunfado para crear una energía renovable, porque se necesita el uso de catalizadores que acostumbran a ser caros y tóxicos, por esto, no tendría un uso a nivel industrial. 
Otra nueva investigación forma parte de un nuevo campo de investigación relacionado con la fotosíntesis semiartificial, su objetivo es superar las limitaciones de la fotosíntesis artificial.
Soko destacó, "Es emocionante poder seleccionar el proceso que queremos y alcanzar la reacción que queremos que es inalcanzable en la naturaleza. Esto sería una buena plataforma para el desarrollo de tecnologías solares."
Fuentes : 20 MinutosLa Razón

OBTIENEN LUZ DE LA FOTOSÍNTESIS DE LAS PLANTAS

Un grupo de estudiantes de la Universitat Autónoma de Barcelona y de la Ramón Llull, encabezado por el joven de 25 años, Pablo Vidarte, ha diseñado un sistema para generar electricidad a partir de las plantas, gracias a la aplicación de la biotecnología, rama de las ciencias biológicas que usa los organismos vivos o partes de los mismos para producir bienes y servicios.

El objetivo del proyecto es fusionar naturaleza y tecnología a través de soluciones innovadoras. Se trata del proyecto Bioo, una batería biológica que atrapa los electrones que normalmente se escapan durante el proceso de la fotosíntesis. Es el primer sensor sostenible para la agricultura de precisión alimentado energéticamente por la propia tierra, evitando el uso de pilas químicas y de instalaciones de paneles solares, y sus mantenimientos, con el consiguiente ahorro de costes. Es, por tanto, una batería biológica alimentada por la tierra.

Su funcionamiento se basa en que la celda microbiana de Bioo se nutre de materia orgánica y fertilizantes. El mecanismo de la celda está potenciado por un consorcio de microorganismos que viven en su medio natural. La materia orgánica y los fertilizantes son arrastrados por la irrigación y la lluvia hacia la celda, así los microorganismos rompen la materia orgánica liberando electrones, creando una corriente eléctrica en la batería.

Gracias al proyecto Bioo, las familias podrían cubrir sus necesidades de electricidad a través de unos paneles de diez por diez metros de vegetación. Ya es capaz de cargar un móvil y de ofrecer conexión wifi, pero el objetivo es ir más allá, pues los paneles vegetales generarían electricidad para usarse también fuera del ámbito doméstico. Según explicaron en el Mobile World Congress de Barcelona, el sistema genera una potencia de 3 a 40 vatios por metro cuadrado. El dispositivo es capaz de producir electricidad constantemente mediante un sistema de autoabastecimiento, que además no daña a las plantas.

Solo existen dos proyectos fuera de España que cuenten con dispositivos parecidos, pero según aseguran los estudiantes del proyecto, Bioo tiene un mínimo de producción eléctrica diez veces mayor, y su implementación es más barata.

Además, Bioo ha desarrollado un panel vegetal único que genera y suministra energía de las bacterias de la tierra misma para encender sistemas de parques y jardines. Otra de sus ideas son los interruptores biológicos que se activan cuando un ser vivo entra en contacto con una planta, percibe los cambios en frecuencias, que los convierten en un voltaje que se transmite por sus cuerpos conductores y la tierra. El dispositivo captura esta señal convirtiéndolo en un interruptor capaz de activar cualquier sistema alimentado externamente. 

Por otro lado, los estudiantes apuestan por el concepto de ciudad inteligente, que permita a las personas que utilicen Bioo, comprar o vender electricidad.

Fuentes: OkDiario, HuelvaBuenasNoticias. Canal Sur

LAS PLANTAS GRITAN CUANDO ESTÁN ESTRESASDAS


 Ya se había descubierto que ciertas plantas pueden llegar a cambiar de color o liberar aromas fuertes ante la falta de agua, el ataque de plagas y ciertas situaciones estresantes. Pero estas no son sus únicas respuestas. Un equipo liderado por Lilach Hadany, bióloga de la universidad de Tel Aviv en Israel, ha identificado por primera vez que las plantas emiten sonidos y `gritan´ cuando estan amenazadas, estos sonidos son tan agudos que los humanos somos incapaces de percibirlos. El equipo llevo a cabo un experimento con plantas de tomates y tabaco, las dividirian en tres grupos: uno de control sin estimulos amenazantes, otro sometido a deshidratación y otro en el que los tallos fueron cortados. Se instalaron micrófonos enfocados a un rango de sonido ultrasónico entre 20 y 150 KHz.

Según se mencionó en el medio, en el proceso, se encontró que el tono que las plantas emitirían cuando se sentían amenazadas por algún depredador es diferente a cuando se percibían temperaturas demasiado elevadas.

Con los resultados del estudio, los científicos confirmaron que las plantas son seres ruidosos, que responden a los estimulos negativos del entorno con sonidos. Casi como en señal de alarma.

Ademásde cambiar nuestroentendimiento sobre la vida y sensibilidad de las plantas, este estudio ofrece una nueva visión sobre la evolución de las especies vegetales en el planeta.

Fuentes: National Geographic en españolClarín

miércoles, 26 de abril de 2023

DESCUBREN DOS NUEVOS TIPOS DE PLANTAS CARNÍVORAS EN LOS ANDES

Un equipo de botánicos de Ecuador, Alemania y Estados Unidos han descubierto dos nuevas especies de plantas carnívoras en los Andes. Tras varios análisis morfológicos, llegaron a la conclusión de que estas plantas proceden del tipo butterworts, el cual es un grupo de plantas con unas 115 especies capaces de atrapar y digerir insectos diminutos gracias a sus hojas pegajosas. 

Dichas plantas descubiertas son llamadas: "La Pinguicula jimburensis Pinguicula ombrophila". La Pinguicula jimburensis se caracteriza por presentar hojas erectas, poco profundas y con lóbulos irregulares. En cambio, la Pinguicula ombrophila tiene hojas planas con flores muy cortas que no llegan a la medida de una hoja. 

Las plantas carnívoras suelen utilizar animales como fuente nutritiva para compensar la baja eficiencia de sustrato en el que crecen. Esto les permite progresar y florecer en difíciles hábitats. Una curiosidad es que el nombre de la planta Pinguicula ombrophila tiene como significado "mariposa amante de la lluvia" y es por ello que viven en zonas donde abundan las nubes y la lluvia. Por esta razón, dichos tipos de plantas habitan en los Andes tropicales debido a la existencia de pantanos y laderas rocosas cubiertas de lluvias y nubes constantes. 

Aunque la mayor parte de las especies de butterwort se encuentran en el hemisferio norte, estas dos nuevas especies fueron halladas en los altos Andes del sur de Ecuador, cerca de la frontera de Perú.

Las dos nuevas especies descritas en este estudio, Pinguicula jimburensis y Pinguicula ombrophila, fueron descubiertas en una laguna de 3.400 metros y 2.900 metros de altura respectivamente. Además, integrantes del centro de la investigación realizaron una valoración y obtuvieron que estas nuevas especies de plantas habitan en un solo lugar donde se encuentran pocas docenas de individuos de plantas en cada caso. 

En el estudio remarcan que la consiguiente destrucción de hábitats supone una gran amenaza para la biodiversidad y para aquellos organismos especializados que están sometidos a sus hábitats frágiles y particulares. Por ello, mencionan la necesidad urgente de protegerlos. 

Además de estas dos nuevas especies, aún quedan otras muchas por ser descubiertas. También, los resultados obtenidos en este estudio muestran que la biodiversidad neotropical está muy lejos de completarla, ya que como bien estas dos nuevas especies de plantas carnívoras, se descubren y describen de manera continua nuevos taxones en áreas remotas. 

Los expertos botánicos de este estudio llevaron a cabo algunos análisis morfológicos con gran detalle para estas nuevas especies y realizaron una descripción taxonómica, además de presentar imágenes de plantas florales y vegetativas y un mapa de su distribución. Incluso, se compararon con otras especies para encontrar relaciones entre ellas.

Por último, los investigadores del estudio afirmaron la diversidad andina actual como no determinada de manera concluyente y además mostraron el peligro que suponen las amenazas a los ecosistemas naturales de forma general. 

Fuentes: Infobae , Información

PLANTAS CAPACES DE CAZAR INSECTOS

Se ha descubierto la primera descripción exhaustiva de la existencia de diferentes plantas capaces de atrapar insectos fue realizada por Charles Darwin, cuya curiosidad por el tema nació tras observar las hojas de una planta del género Drosera llenas de insectos muertos adheridos a su superficie, gracias a ello publicó el libro «Plantas insectívoras».

Posteriormente, pudo observarse como este tipo de plantas no solo atrapaban insectos, sino que también arácnidos, moluscos y otros invertebrados, e incluso pequeños vertebrados como lagartos o murciélagos, razón por la cual se pasó a denominarlas como plantas carnívoras. Esta falta nutritiva les ha obligado a desarrollar diferentes estrategias para conseguir suplir esas deficiencias y sobrevivir, en su caso, suplementando su nutrición con animales. Para ello requieren de tres procesos indispensables y presentes en todas ellas: la atracción de las presas, su captura y su posterior digestión y absorción de nutrientes.

Incluso pueden imitar los olores de carne en putrefacción que va a atraer a gran cantidad de insectos, muchos de ellos moscas, para alimentarse de esa carne muerta inexistente o intentar poner allí sus huevos, siendo atrapados por la planta.

Otra estrategia desarrollada por estas plantas para la captura, se basa en la succión en ambientes acuáticos mediante una estructura denominada utrículo en forma de pequeño «globo de agua» que cuando siente un pequeño animal cerca se hincha en cuestión de milésimas de segundo, absorbiendo toda el agua cercana junto con la presa, para su digestión.

Estas plantas han modificado sus hojas para que formen grandes jarras que se llenan del agua de lluvia. Los pequeños animales terminarán muriendo ahogados por agotamiento, y en ese mismo medio acuoso comenzará la digestión de la presa.

Llegados a este momento, comienza la parte más difícil de todo el proceso, la digestión de animales completos hasta nutrientes absorbibles por los epitelios de las plantas. También pueden existir simbiosis entre estas plantas y bacterias que sean capaces de descomponer las presas, o incluso relaciones mutualistas con otros insectos que se alimenten de las presas de las plantas y a su vez las plantas adquieran los nutrientes que necesitan de los excrementos de sus insectos «amigos».

La forma en la que las plantas carnívoras han tenido que evolucionar para poder sobrevivir en ambientes muy pobres les ha dado un abanico enorme de estrategias para alimentarse animales, y no al revés.

«La ciencia que no es divulgada hacia la sociedad es como si no existiera»

Este artículo nos lo envía Jorge Poveda Arias, Graduado en Biología y trabaja en una empresa dedicada a la cría a nivel industrial de insectos con fines de alimentación. Además, realiza una tesis doctoral en el estudio de las interacciones planta-microorganismo.

domingo, 23 de abril de 2023

BIOESTIMULANTES: CLAVE PARA MEJORAR LA EFICIENCIA DE LA PRODUCCIÓN AGRÍCOLA.


El uso de bioestimulantes puede mejorar la eficiencia del uso de nutrientes en las plantas y reducir el estrés, lo que puede ser clave para mejorar la producción agrícola. Actualmente, solo entre el 30% y el 50% de los nutrientes aplicados a los cultivos son absorbidos por las plantas, lo que representa un problema para los agricultores debido al aumento de los precios de los fertilizantes y la creciente preocupación de los consumidores sobre el impacto ambiental de la agricultura.

La eficiencia en el empleo de nutrientes por los bioestimulantes se debe en gran parte a su papel en la reducción del estrés en las plantas, según el Dr. Patrick Brown, especialista en nutrición de plantas de la Universidad de California, Davis. Sin embargo, señala que todavía queda mucho por aprender sobre el mundo de los bioestimulantes, ya que es un campo relativamente nuevo que experimenta un rápido crecimiento.

En cuanto a los cultivos de alto y bajo valor, la eficiencia en el empleo de nutrientes está relacionada con la capacidad de crear soluciones moleculares que permitan a los cultivos producir más con la misma cantidad de nutrientes. En los cultivos de alto valor, el objetivo es maximizar el rendimiento y cumplir con las regulaciones ambientales, mientras que en los cultivos de bajo valor, el objetivo es minimizar las pérdidas de los fertilizantes aplicados.

La eficiencia promedio global en el utilización de nutrientes está entre el 30% y el 50%, lo que significa que de 100 kilogramos de fertilizantes aplicados, solo entre 30 y 50 terminan en la cosecha deseada y el resto se pierde en el medio ambiente. Esto no solo representa una pérdida de dinero, sino también una amenaza para el medio ambiente.

En resumen, comprender la eficiencia en el uso de nutrientes y utilizar bioestimulantes puede ayudar a los agricultores a producir de manera más eficiente y sostenible, minimizando las pérdidas y reduciendo el impacto ambiental de la agricultura. La legislación española sobre fertilizantes permite el utilización de microorganismos para mejorar la fertilización del suelo, lo que abre nuevas posibilidades para la nutrición de las plantas y la agricultura.

LA NUEVA VARIANTE DEL CORONAVIRUS

 Los Centros de Control de Enfermedades (CDC) de Estados Unidos ha detectado una nueva variante de la covid-19 en los procesos reglamentario...